Working at 700 MHz: from Theory to Practice

Alfonso Mangoni

Dipartimento di Chimica delle Sostanze Naturali Università di Napoli "Federico II"

Quali parametri devo mettere???

Come devo trasformare???

NMR Data Acquisition and Processing

2D NMR

2D NMR

NMR Data Acquisition and Processing

- Digitalization
- Zero filling (digital resolution)
- Apodization (window functions)
- Linear prediction
- Fourier transform
- Phase correction
- Baseline correction
- Symmetrization

The Complex Fourier Transform

Real FT:
$$F(v) = \int_{-\infty}^{+\infty} f(t) \cdot \cos(2\pi vt) dt$$

Complex FT:
$$F(v) = \int_{-\infty}^{+\infty} f(t) \cdot e^{-i2\pi vt} dt$$
$$e^{-i2\pi vt} = \cos(2\pi vt) - i\sin(2\pi vt)$$

FT of complex NMR signal

FT of complex NMR signal produces a complex spectrum, composed of real and imaginary parts. For a signal with initial phase $\phi = 0^{\circ}$ the real part is the usual absorption peak, while the imaginary part is a *dispersive lorentzian*.

FT of complex NMR signal

In contrast, if the initial phase is $\phi = 90^{\circ}$, the real part is dispersive peak, and the imaginary part is an absorption peak.

FT of complex NMR signal

Finally, if the initial phase is $\phi = 180^{\circ}$ the FID is the opposite of the FID for $\phi = 0^{\circ}$, and this also applies to the transformed spectrum (only the real part is shown here).

 $\varphi = 0^{\circ}$

Phase in NMR signal

$\operatorname{Re'=Re}\cos(\varphi) - \operatorname{Im}\sin(\varphi)$

Phase correction

In practice, it is not necessary that the initial phase of the NMR signal is exactly 0°. If it is different from 0°, both the real and the imaginary parts are "mixtures" (more correctly, linear combinations) of absorption and dispersive peaks.

Phase correction

If we calculate a linear combination of the real and imaginary part:

 $\text{Re} \cdot \cos(\theta) + \text{Im} \cdot \sin(\theta)$

we can obtain a pure absorption specrtrum choosing a suitable $\boldsymbol{\theta}$ parameter.

The θ parameter is the initial phase of the NMR signal, and is therefore an angle. The most important contribution to phase error is a the difference between pulse rf and detection rf phases.

Phase error in the NMR signal

 $\operatorname{Re'} = \operatorname{Re} \cdot \cos(\theta) - \operatorname{Im} \cdot \sin(\theta)$

$$\theta = \theta_0 + \theta_1 \cdot (\nu - v_0)$$

 θ_0 is the zero-th order phase constant (Bruker: PHCO, Varian: rp) θ_1 is the first order phase constant (Bruker: PHC1, Varian: lp)

Phase error in the NMR signal

$\operatorname{Re'} = \operatorname{Re} \cdot \cos(\theta) - \operatorname{Im} \cdot \sin(\theta) \qquad \theta = \theta_0 + \theta_1 \cdot (\nu - \nu_0)$

 θ_0 is the zero-th order phase constant (Bruker: PHCO, Varian: rp) θ_1 is the first order phase constant (Bruker: PHC1, Varian: lp)

Magnitude-mode spectra

The discrete Fourier transform

Fast Fourier Transform

Discrete Fourier Transform requires that:

- the signal is measured at fixed time intervals
- all the points are included in the calculation

The (fast) algorithm used to perform DFT, requires that:

- the transformed spectrum has the same number of points as the original FID
- this number of points is a power of 2 (256, 512, 1024, 2048, 4196,)

Digitalization: the Nyquist Sampling Theorem

Digitalization: Folded Peaks

Quantization noise

The accuracy by which the intensity of the signal can be measured is limited by the resolution of the ADC

This results in noise, which is called quantization noise

Most high-resolution spectometers have a 16-bit ADC = 65536 levels

ADC overflow

If the gain is too high, the most intense points of the FID are clipped to the maximum ADC value. A "clipped" FID generates a spectrum with distorted baseline

2D NMR: sampling the indirect dimension

Bruker params: F2: SW, DW F1: SW, INO Varian params: sw, dw sw1, d2

Digitalization: indirect vs. direct dimension

Sampling frequency along t₂ is determined by the increment of t₁ between subsequent experiments

Direct dimension (t₂):

- sampling can be as fast as desired at (almost) no price
- oversampling is standard
- t₂ can be as long as desired at (almost) no price

Indirect dimension (t₁):

- any increase in sampling speed results in more FIDs to acquire
- any increase in t₁ results in more FIDs to acquire
- oversampling is generally impractical

Digital resolution

Digital resolution is the distance in Hz between two contiguous points in the specrum

It depends on t₂, i.e. how long the FID is acquired

In 1D NMR usually $t_2 >> T_2^*$ This is not always true in 2D NMR (both for t_2 and t_1)

Digital resolution in 2D NMR

To avoid huge data matrices (t_2) and to reduce the duration of the experiment (t_1) , digital resolution is usually kept low in 2D NMR

Bruker params: F2: TD, AQ, SI, SW F1: TD, SI, INO Varian params: np, at, fn, sw ni, fn1, sw1

Zero filling

There is no reason to acquire the FID after the signal is decayed to zero

However, it is useful to have a digital resolution higher than the actual resolution of the spectrum (which depends on T_2^*)

The FFT algorithm requires that the transformed spectrum has the same number of points as the original FID

The solution is to append zero points at the end of the FID before FFT

Truncated FID

Apodization

Windows Functions: Exponential

Bruker params:

- F2: LB
- F1: LB

Varian params: lb lb1

Windows functions: Gaussian

Windows Functions: Gaussian

Windows Functions: Sine and Cosine

Windows Functions: Sine and Cosine

Windows Functions: Sine and Cosine

 $\begin{array}{ll} \text{if SSB} < 2 & \alpha = 0^{\circ} \\ \\ \text{else} & \alpha = \frac{180^{\circ}}{\text{SSB}} \end{array}$

Linear Prediction

Linear Prediction

Magnitude-Mode 2D Spectra: Sine

Forward linear prediction

Backward linear prediction

Linear Prediction	🖌 F1	✓ F2
	Auto	Auto
back / forward	Ob®f	
coefs	4	12
basis pts	256	256
starting at	256	6
predicted pts	256	6
starting at	257	6

Backward Linear Prediction

Linear Prediction

ni = 256, 3× LP, $t_1 = 0.107$ s, 90° shifted sine, null at $t_1 = 0.428$ s

Symmetrization

Symmetrization

Suggested parameters for COSY

		Varian	Bruker
sequence	the simplest	COSY	cosyqf
	(magnitude mode) 🧎	gCOSY	cosygpqf
points acq. (F2)	1-4k	np (**)	TD (F2)
points acq. (F1)	512-1k	ni	TD (F1)
scans	1-4 (with gradients)	nt	NS
	8*n (w/o gradients)		
window funct. (F2)	square sine	sb=-at/2	QSIN
		sbs=0	SSB=0
window funct. (F1)	square sine	sb1=-ni/(sw1*2)	QSIN
		sbs1=0	SSB=0
linear prediction	NO!		
Tranf.d size	same in F1 and F2,	fn	SI (F2)
	1K-4k	fn1	SI (F1)
symmetryzation	with care	foldt	sym

Suggested parameters for TOCSY

		Varian	Bruker
sequence	zq filtered!	zTOCSY	dipsi2gpphzs
		sspul='n'	
points acq. (F2)	4k-32k	np (*)	TD (F2)
points acq. (F1)	256-1k	ni	TD (F1)
mixing time	100 ms	mixT	d9
spinlock power	<8000 Hz	spinlockT (*)	p6, pl10 (*)
scans	8*n	nt	NS
window funct. (F2)	square cosine	sb=-at/2	QSIN
		sbs=sb	SSB=2
window funct. (F1)	square cosine	sb1=–ni/sw1	QSIN
		sbs1=sb1	SSB=2
linear prediction	yes (F1)		
transformed size	2-32k	fn	SI (F2)
	512-2k	fn1	SI (F1)
symmetryzation	no		

B₁ strength

 $B_1(\text{Hz}) = \frac{1,000,000}{4 \cdot \text{PW90}(\mu \text{s})}$

Vesparioside B

Zero-quantum filtered TOCSY (zTOCSY)

M. J. Thrippleton, J. Keeler, Angew. Chem. Int. Ed. 2003, 42, 3938-3941

Suggested parameters for ROESY

		Varian	Bruker
sequence		ROESY	roesyph
points acq. (F2)	1k-4k	np (*)	TD (F2)
points acq. (F1)	256-1k	ni	TD (F1)
mixing time	200-600 ms	mixR	p11
spinlock power	2000-4000 Hz	spinlockR (*)	pl11
scans	8*n	nt	NS
window funct. (F2)	square cosine	sb=–at	QSIN
	-	sbs=sb	SSB=2
window funct. (F1)	square cosine	sb1=–ni/sw1	QSIN
		sbs1=sb1	SSB=2
linear prediction	yes (F1)		
transformed size	1-4k	fn	SI (F2)
	512-2k	fn1	SI (F1)
symmetryzation	no		

ROESY e TOCSY

+

+

When diagonal peaks are positive:

	cross peak
TOCSY	+
ROESY	_
chemical exchange	_
Zero-quantum	antiphase

but also ROESY→ROESY TOCSY→ROESY

Suggested parameters for HSQC

		Varian	Bruker
sequence	the most recent avai	lable	
. (gradients, editing, echo-antiecho, adiabatic pulses)			
points acq. (F2)	1k-2k	(at < 150 ms)	TD (F2)
points acq. (F1)	256-512	ni	TD (F1)
scans	1*n	nt	NS
J _{CH}	145 Hz	j1xh	cnst2
window funct. (F2)	square cosine	sb=—at shs—sh	QSIN SSB-2
window funct. (F1)	square cosine	sb3=30 sb1=-ni/sw1 sbs1=sb1	QSIN SSB=2
linear prediction	yes (F1)		
transformed size	1k-4k	fn	SI (F2)
	512-2k	fn1	SI (F1)

Suggested parameters for HMBC

lients, editing, adiabat	<i>Varian</i> gHMBCAD ic pulses, F1 phase	<i>Bruker</i> hmbcetgpnd sensitive)
1k-4k	np	TD (F2)
256-1k	ni	TD (F1)
1*n	nt	NS
8 Hz	jnxh	cnst13
square sine	sb=-at/2	QSIN
	sbs=0	SSB=0
square cosine	$sb^{1} = -ni/sw^{1}$	QSIN
	sbs1 = -sb1	SSB=2
yes (F1 only)		
1k-4k	fn	SI (F2)
512-2k	fn1	SI (F1)
	ients, editing, adiabat 1k-4k 256-1k 1*n 8 Hz square sine square cosine yes (F1 only) 1k-4k 512-2k	Varian gHMBCADients, editing, adiabatic pulses, F1 phase1k-4knp256-1kni1*nnt8 Hzjnxhsquare sinesb=-at/2 sbs=0square cosinesb1=-ni/sw1 sbs1=-sb1yes (F1 only)isbs1=-sb11k-4kfn 512-2k