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Working at 700 MHz: from Theory to Practice





Quali parametri devo mettere???

Come devo trasformare???



NMR Data Acquisition and Processing
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NMR Data Acquisition and Processing

• Digitalization

• Zero filling (digital resolution)

• Apodization (window functions)

• Linear prediction

• Fourier transform

• Phase correction

• Baseline correction

• Symmetrization



The Fourier Transform
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The Fourier Transform
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The Fourier Transform

f(t): 20 Hz ν: 30 Hz
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The Fourier Transform

f(t): 20 Hz
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The Complex Fourier Transform

Real FT:
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FT of complex NMR signal

FT of complex NMR signal produces a complex spectrum, composed of real and
imaginary parts. For a signal with initial phase φ = 0° the real part is the usual
absorpion peak, while the imaginary part is a dispersive lorentzian.
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In contrast, if the initial phase is φ = 90°, the real part is dispersive peak, and the
imaginary part is an absorpion peak.
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Finally, if the initial phase is φ = 180° the FID is the opposite of the FID for φ = 0° ,
and this also applies to the transformed spectrum (only the real part is shown
here).

FT
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Phase in NMR signal

Re
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Phase correction

In practice, it is not necessary that the initial phase of the NMR signal is exactly
0°. If it is different from 0°, both the real and the imaginary parts are "mixtures"
(more correctly, linear combinations) of absorption and dispersive peaks.
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If we calculate a linear combination of the real and imaginary part:

Re · cos(θ) + Im · sin(θ)

we can obtain a pure absorption specrtrum choosing a suitable θ parameter.

The θ parameter is the initial phase of the NMR signal, and is therefore an angle.

The most important contribution to phase error is a the difference between
pulse rf and detection rf phases.

real part imaginary part

– =cos(30°) sin(30°)
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Phase error in the NMR signal

Acquisition starts here

θ0 is the zero-th order phase constant (Bruker: PHC0, Varian: rp) 

θ1 is the first order phase constant (Bruker: PHC1, Varian: lp)
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Phase error in the NMR signal

θ0 is the zero-th order phase constant (Bruker: PHC0, Varian: rp) 

θ1 is the first order phase constant (Bruker: PHC1, Varian: lp)
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Magnitude-mode spectra

Re

Im
(Re2 + Im2)1/2

Absorption signal Magnitude signal



The discrete Fourier transform
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Fast Fourier Transform

Discrete Fourier Transform requires that:

• the signal is measured at fixed time intervals

• all the points are included in the calculation 

The (fast) algorithm used to perform DFT, requires that:

• the transformed spectrum has the same number of points as the original FID

• this number of points is a power of 2 (256, 512, 1024, 2048, 4196, …..)



Digitalization: the Nyquist Sampling Theorem

sampling frequency = 2 · SW
(but sampling frequency = SW  with quadrature detection)

Bruker params:

F2: SW, DW

F1: SW, IN0 (or INF1)  

Varian params:

sw, dw

sw1, d2



Digitalization: Folded Peaks

Folded (aliased) peaks in the direct dimension



Quantization noise

The accuracy by which the intensity of the signal can be measured is limited by
the resolution of the ADC

This results in noise, which is called quantization noise

Most high-resolution spectometers have a 16-bit ADC = 65536 levels

6-bit ADC

8-bit ADC



ADC overflow

If the gain is too high, the most intense points of the FID are clipped to the 
maximum ADC value. A “clipped” FID generates a spectrum with distorted 

baseline

Bruker params:

RG

Varian params:

gain



2D NMR: sampling the indirect dimension

t1

Any combination of

pulses and delays

t2

Sampling frequency along t2 is the 
actual sampling speed

sampling frequency = 2 · SW = 1/(t1)

Bruker params:

F2: SW, DW

F1: SW, IN0

Varian params:

sw, dw

sw1, d2

FID

Sampling frequency along t1 is determined 
by the increment of t1 between subsequent 

experiments (t1)



Digitalization: indirect vs. direct dimension

Direct dimension (t2):
• sampling can be as fast as desired at (almost) no price

• oversampling is standard

• t2 can be as long as desired at (almost) no price

Indirect dimension (t1):
• any increase in sampling speed results in more FIDs to acquire

• any increase in t1 results in more FIDs to acquire

• oversampling is generally impractical

t1

Any combination of

pulses and delays

t2
Sampling frequency along t2 is 

determined by the increment of t1

between subsequent experiments



2K points

4K points

8K points

16K points

32K points

Digital resolution

Digital resolution is the distance in Hz between two contiguous 
points in the specrum

It depends on t2, i.e. how long the FID is acquired

In 1D NMR usually t2 >> T2
*

This is not always true in 2D NMR (both for t2 and t1)



Digital resolution in 2D NMR

To avoid huge data matrices (t2) and to reduce the duration of the 
experiment (t1), digital resolution is usually kept low in 2D NMR

Bruker params:

F2: TD, AQ, SI, SW

F1: TD, SI, IN0

Varian params:

np, at, fn, sw

ni, fn1, sw1



16K acquired points 16K zero points

Zero filling

There is no reason to acquire the FID after the signal is decayed to zero

However, it is useful to have a digital resolution higher than the actual 
resolution of the spectrum (which depends on T2

*)

The FFT algorithm requires that the transformed spectrum has the same 
number of points as the original FID

The solution is to append zero points at the end of the FID before FFT



1K zero points

Truncated FID

In 2D NMR, usually the FID is not decayed to zero at the end of t2

(truncated FID). 
1K acquired points

In the FT of a truncated FID, all signals have wiggles



Apodization

The reason for the wiggles is the step in the FID. If the step is removed, 
wiggles disappear 

This is done by multiplying the FID for a function (here a cosine bell) 
called window function



Windows Functions: Exponential

Bruker params:
F2: LB
F1: LB

Varian params:
lb
lb1



Windows functions: Gaussian

Bruker params:
F2: LB, GB
F1: LB, GB

Varian params:
lb, gf
lb1, gf1



Windows Functions: Gaussian



Windows Functions: Sine and Cosine

60° shifted sine

sine cosine

(90° shifted sine)



60° shifted square sine

square cosine

(90° shifted square sine)

Windows Functions: Sine and Cosine

square sine



Windows Functions: Sine and Cosine

sbs sbsb

if SSB < 2       α = 0°

else
SSB

180
  α




sb



Linear Prediction

original FID

truncated FID

apodized FID

LP’ed FID



Linear Prediction

original

truncated

apodized

LP’ed



Magnitude-Mode 2D Spectra: Sine
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Forward linear prediction



Backward linear prediction

lpnuptslpext

strtlp

strtext



Backward Linear Prediction

A few corrupted points at the beginning of the FID can cause extensive 
baseline distortion

Backward linear prediction can be used to replace this points



ni = 256, no LP, t1 = 0.107 s, 90° shifted sine, null at t1 = 0.107 s 

Linear Prediction

ni = 256, no LP, t1 = 0.107 s, 90° shifted sine, null at t1 = 0.214 s ni = 256, no LP, t1 = 0.107 s, 90° shifted sine, null at t1 = 0.428 s ni = 256, 3 LP, t1 = 0.107 s, 90° shifted sine, null at t1 = 0.428 s 



Symmetrization



Symmetrization



Suggested parameters for COSY

Varian Bruker

sequence the simplest COSY cosyqf

(magnitude mode) gCOSY cosygpqf

points acq. (F2) 1-4k np (**) TD (F2)

points acq. (F1) 512-1k ni TD (F1)

scans 1-4 (with gradients) nt NS

8*n (w/o gradients)

window funct. (F2) square sine sb=−at/2 QSIN

sbs=0 SSB=0

window funct. (F1) square sine sb1=−ni/(sw1*2) QSIN

sbs1=0 SSB=0

linear prediction NO!

Tranf.d size same in F1 and F2, fn SI (F2)

1K-4k fn1 SI (F1)

symmetryzation with care foldt sym

{



Suggested parameters for TOCSY

Varian Bruker

sequence zq filtered! zTOCSY dipsi2gpphzs

sspul='n'

points acq. (F2) 4k-32k np (*) TD (F2)

points acq. (F1) 256-1k ni TD (F1)

mixing time 100 ms mixT d9

spinlock power <8000 Hz spinlockT (*) p6, pl10 (*)

scans 8*n nt NS

window funct. (F2) square cosine sb=−at/2 QSIN

sbs=sb SSB=2

window funct. (F1) square cosine sb1=−ni/sw1 QSIN

sbs1=sb1 SSB=2

linear prediction yes (F1)

transformed size 2-32k fn SI (F2)

512-2k fn1 SI (F1)

symmetryzation no
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Vesparioside B

z-filtered TOCSY

standard TOCSY



Zero-quantum filtered TOCSY (zTOCSY)

z-filtered TOCSY

standard TOCSY

M. J. Thrippleton, J. Keeler, Angew. Chem. Int. Ed. 2003, 42, 3938-3941



Suggested parameters for ROESY

Varian Bruker

sequence ROESY roesyph

points acq. (F2) 1k-4k np (*) TD (F2)

points acq. (F1) 256-1k ni TD (F1)

mixing time 200-600 ms mixR p11

spinlock power 2000-4000 Hz spinlockR (*) pl11

scans 8*n nt NS

window funct. (F2) square cosine sb=−at QSIN

sbs=sb SSB=2

window funct. (F1) square cosine sb1=−ni/sw1 QSIN

sbs1=sb1 SSB=2

linear prediction yes (F1)

transformed size 1-4k fn SI (F2)

512-2k fn1 SI (F1)

symmetryzation no



ROESY e TOCSY

When diagonal peaks are positive:

cross peak

TOCSY +

ROESY −

chemical exchange −

Zero-quantum antiphase

but also

ROESYROESY +

TOCSYROESY +



Suggested parameters for HSQC

Varian Bruker

sequence the most recent available

(gradients, editing, echo-antiecho, adiabatic pulses...)

points acq. (F2) 1k-2k (at < 150 ms) TD (F2)

points acq. (F1) 256-512 ni TD (F1)

scans 1*n nt NS

J
CH

145 Hz j1xh cnst2

window funct. (F2) square cosine sb=−at QSIN

sbs=sb SSB=2

window funct. (F1) square cosine sb1=−ni/sw1 QSIN

sbs1=sb1 SSB=2

linear prediction yes (F1)

transformed size 1k-4k fn SI (F2)

512-2k fn1 SI (F1)



Suggested parameters for HMBC

Varian Bruker

Sequence gHMBCAD hmbcetgpnd

(gradients, editing, adiabatic pulses, F1 phase sensitive)

points acq. (F2) 1k-4k np TD (F2)

points acq. (F1) 256-1k ni TD (F1)

scans 1*n nt NS

J
CH

8 Hz jnxh cnst13

window funct. (F2) square sine sb=−at/2 QSIN

sbs=0 SSB=0

window funct. (F1) square cosine sb1=−ni/sw1 QSIN

sbs1= −sb1 SSB=2

linear prediction yes (F1 only)

transformed size 1k-4k fn SI (F2)

512-2k fn1 SI (F1)


