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- Listing of the 500 most powerful

Computers in the World

- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem TPP performance
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Ax=b, dense problem

- Updated twice a year

SC‘xy in the States in November

Meeting in Germany in June

- All data available from www.top500.org
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Performance DevelopmentPerformance Development
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Processors Used in the Top500 SystemsProcessors Used in the Top500 Systems
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Intel 81%
AMD 10%
IBM 8%



Today’s Today’s MulticoresMulticores
99% of Top500 Systems Are Based on 99% of Top500 Systems Are Based on MulticoreMulticore

Sun Niagra2 (8 cores)
Intel Xeon(8 cores)

Of the Top500, 
499 are multicore.

IBM Power 7 (8 cores)

5

Intel Knight’s Corner
(40 cores)

IBM BG/P (4 cores)

AMD MagnyCours
(12 cores)

Fujitsu Venus (8 cores)



Performance of Countries
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Countries / System Share

7 systems in the Italy



June 2010: The TOP10June 2010: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of 
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS                 

Oak Ridge Nat Lab
Jaguar / Cray 

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer 
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM 

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS /          
U of Tennessee

Kraken/ Cray 
Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 2694
U of Tennessee Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research 

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in 

Tianjin / NUDT

Tianhe-1 / NUDT TH-1 / 
IntelQC +  AMD ATI Radeon

4870 
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS          

Argonne Nat Lab
Intrepid / IBM 

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA
Sandia Nat Lab

Red Sky / Sun /       
SunBlade 6275

USA 42,440 .433 87 2.4 180
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#1 #1 ORNL’sORNL’s Newest System Jaguar XT5 Newest System Jaguar XT5 

Recently upgraded to a 2 Pflop/s

Office ofOffice ofOffice ofOffice of
ScienceScienceScienceScience

Recently upgraded to a 2 Pflop/s
system with more than 224K 

cores using AMD’s  6 Core chip.

Peak performance 2.332 PF

System memory 300 TB

Disk space 10 PB

Disk bandwidth 240+ GB/s

Interconnect bandwidth 374 TB/s



#2 #2 –– National Supercomputer Center in National Supercomputer Center in 

Shenzhen, China Shenzhen, China –– Dawning IntegratorDawning Integrator

♦ Nebulae
♦ Hybrid system, commodity + GPUs
♦ Theoretical peak 2.98Pflop/s
♦ Linpack Benchmark at 1.27 Pflop/s
♦ 4640 nodes, each node: 
2 Intel 6-core Xeon5650 + Nvidia

♦ 4640 nodes, each node: 
2 Intel 6-core Xeon5650 + Nvidia
Fermi C2050 GPU (each 14 cores) 
�120,640 cores
�Infiniband connected

�500 MB/s peak per link and 8 GB/s



Commodity plus AcceleratorsCommodity plus Accelerators

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia C2050 “Fermi”
448 “Cuda cores”

1.15 GHz
448 ops/cycle

515 Gflop/s (DP)

CommodityCommodityCommodityCommodity Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)

07

15

Interconnect
PCI Express

512 MB/s to 32GB/s
8 MW – 512 MW



Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications
and encourage development of parallel processing )

� 1 GFlop/s; 1988; Cray Y-MP; 8 Processors

� Static finite element analysis

� 1 TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using a                   �Modeling of metallic magnet atoms, using a                   
variation of the locally self-consistent multiple             
scattering method.

� 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors

� Superconductive materials

� 1 EFlop/s; ~2018;   ?; 1x107 Processors (109 threads)  



Performance Development in Top500
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Potential System ArchitecturePotential System Architecture
with a cap of $200M and 20MW with a cap of $200M and 20MW 

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB   [ .03 Bytes/Flop ] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ] O(100)Node memory BW 25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for 
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system 
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the 
machine)

O(100)

MTTI days O(1 day) - O(10)
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ExascaleExascale (10(101818 Flop/Flop/ss) Systems: ) Systems: 
Two possible pathsTwo possible paths

• Light weight processors (think BG/P)

� ~1 GHz processor (109)

� ~1 Kilo cores/socket (103)

� ~1 Mega sockets/system (106)� ~1 Mega sockets/system (106)

• Hybrid system (think GPU based)

� ~1 GHz processor (109)

� ~10 Kilo FPUs/socket (104)   

� ~100 Kilo sockets/system (105) 



Factors that Necessitate Redesign of Factors that Necessitate Redesign of 
Our SoftwareOur Software

• Steepness of the ascent from terascale
to petascale to exascale

• Extreme parallelism and hybrid design

• Preparing for million/billion way 
parallelism

• Tightening memory/bandwidth 
bottleneck

• Limits on power/clock speed 50.000
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Systems

• Limits on power/clock speed 
implication on multicore

• Reducing communication will become 
much more intense 

• Memory per core changes, byte-to-flop 
ratio will change

• Necessary Fault Tolerance

• MTTF will drop

• Checkpoint/restart has limitations

Software infrastructure does not exist today 
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Moore’s Law reinterpretedMoore’s Law reinterpreted

• Number of cores per chip will double every 
two years

• Clock speed will not increase (possibly 
decrease) because of Power decrease) because of Power 

• Need to deal with systems with millions of 
concurrent threads

• Need to deal with inter-chip parallelism as 
well as intra-chip parallelism



Major Changes to SoftwareMajor Changes to Software

• Must rethink the design of our 
software
� Another disruptive technology

• Similar to what happened with cluster 
computing and message passing

� Rethink and rewrite the applications, 

24

� Rethink and rewrite the applications, 
algorithms, and software

• Numerical libraries for example will 
change
� For example, both LAPACK and 

ScaLAPACK will undergo major changes 
to accommodate this



Future Computer SystemsFuture Computer Systems
• Most likely be a hybrid design

• Think standard multicore chips and 
accelerator (GPUs)

• Today accelerators are attached

• Next generation more integrated• Next generation more integrated

• Intel’s Larrabee? Now called “Knights 
Corner” and “Knights Ferry” to come.

� 48 x86 cores

• AMD’s Fusion in 2011 - 2013

� Multicore with embedded graphics ATI

• Nvidia’s plans?
25



What’s Next?What’s Next?

All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core

All Small CoreAll Small Core

Many Small CoresMany Small Cores

Many Floating-
Point Cores

Different Classes of 
Chips

Home
Games / Graphics
Business 
Scientific



Five Important Software Features to Five Important Software Features to 
Consider When Computing at ScaleConsider When Computing at Scale
1. Effective Use of Many-Core and Hybrid architectures

� Break fork-join parallelism

� Dynamic Data Driven Execution

� Block Data Layout

2. Exploiting Mixed Precision in the Algorithms

� Single Precision is 2X faster than Double Precision

� With GP-GPUs 10xWith GP-GPUs 10x

� Power saving issues

3. Self Adapting / Auto Tuning of Software

� Too hard to do by hand

4. Fault Tolerant Algorithms

� With 1,000,000’s of cores things will fail

5. Communication Reducing Algorithms

� For dense computations from O(n log p) to O(log p) 
communications 

� Asynchronous iterations

� GMRES k-step compute ( x, Ax,  A2x, … Akx )

27



LAPACK LU/LLLAPACK LU/LLTT/QR/QR

• Fork-join, bulk synchronous processing 28

Step 1 Step 2 Step 3 Step 4Step 4Step 4Step 4 . . .. . .. . .. . .



• Break into smaller tasks and remove 
dependencies

Parallel Tasks in Parallel Tasks in LU/LLT/QR

* LU does block pair wise pivoting



•Objectives

� High utilization of each core

� Scaling to large number of cores

� Shared or distributed memory

•Methodology

� Dynamic DAG scheduling

CholeskyCholesky

4 x 44 x 4

PLASMA: Parallel Linear Algebra PLASMA: Parallel Linear Algebra s/ws/w
for for MulticoreMulticore ArchitecturesArchitectures

� Explicit parallelism

� Implicit communication

� Fine granularity / block data layout

•Arbitrary DAG with dynamic scheduling

30

Fork-join
parallelism

DAG scheduled
parallelism

Time



Communication Avoiding AlgorithmsCommunication Avoiding Algorithms

• Goal: Algorithms that communicate as little as possible

• Jim Demmel and company have been working on algorithms 
that obtain a provable minimum communication.

• Direct methods (BLAS, LU, QR, SVD, other decompositions)

• Communication lower bounds for all these problems

• Algorithms that attain them (all dense linear algebra, some 
sparse)

• Mostly not in LAPACK or ScaLAPACK (yet)• Mostly not in LAPACK or ScaLAPACK (yet)

• Iterative methods – Krylov subspace methods for Ax=b, Ax=λx

• Communication lower bounds, and algorithms that attain them 
(depending on sparsity structure)

• Not in any libraries (yet)

• For QR Factorization they can show:

31



Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to 
reduce to upper triangular form.
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Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to 
reduce to upper triangular form.

R
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Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to 
reduce to upper triangular form.

RR

A = Q1Q2Q3R = QR

Q1
T Q2

T Q3
T
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Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz. 
Theoretical peak is 153.2 Gflop/s with 16 cores.
Matrix size 51200 by 3200



Challenges of using Challenges of using GPUsGPUs

High levels of parallelism
Many GPU cores, serial kernel execution 
[ e.g. 240 in theNvidia Tesla; up to 512 in Fermi – to have concurrent kernel 
execution ]

Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural 

46/29

Match algorithmic requirements to architectural 
strengths
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on 
GPU ]

Compute vs communication gap
Exponentially growing gap; persistent challenge
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ]
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of 
O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s
connection ] 



Hybrid ComputingHybrid Computing

Algorithms as DAGs Current hybrid CPU+GPU algorithms(small tasks/tiles for multicoremulticoremulticoremulticore)          (small tasks for multicores and large tasks for GPUs) 
Match algorithmic requirements to architectural strengths of the 
hybrid components
Multicore: small tasks/tiles
Accelerator: large data parallel tasks 

e.g. split the computation into tasks; define critical path that “clears” the way 
for other large data parallel tasks; proper schedule the tasks execution

Design algorithms with well defined “search space” to facilitate auto-tuning



CholeskyCholesky on on multicoremulticore + multi+ multi--GPUsGPUs

HardwareHardwareHardwareHardware
•HOST: Two-dual core AMD Opteron 1.8GHz, 2GB
memory
•DEVICE: 

–4 GPU TESLA C1070 1.44GHz
–240 computing cores per GPU–240 computing cores per GPU
–4GB memory per GPU
–Single precision floating point performance (NVIDIA 
PEAK): 4.14 Tflop/s
–Memory bandwidth: 408 GB/s
–System interface: PCIexpress

Memory limitations prevented Memory limitations prevented Memory limitations prevented Memory limitations prevented runs on larger sizesruns on larger sizesruns on larger sizesruns on larger sizes



SP SP CholeskyCholesky on on MulticoreMulticore + Multi + Multi GPUsGPUs

800

1000

1200

Parallel Performance of the hybrid SPOTRF (4 Opteron 1.8GHz and 4 GPU TESLA C1060 1.44GHz)
1CPU-1GPU 2CPUs-2GPUs 3CPUs-3GPUs 4CPUs-4GPUs
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Performance of Single Precision Performance of Single Precision 
on Conventional and on Conventional and GPU’sGPU’s

• Realized have the 
similar situation on 
our commodity 
processors.
• That is, SP is 2X as 

fast as DP on many 
systems

• The Intel Xeon and 

NVIDIA TeslaNVIDIA TeslaNVIDIA TeslaNVIDIA Tesla

Best case reality: 240 Best case reality: 240 Best case reality: 240 Best case reality: 240 mulmulmulmul----adds adds adds adds 
per clockper clockper clockper clock

Just able to do the Just able to do the Just able to do the Just able to do the mulmulmulmul----add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 

Single precision is faster because:
•Operations are faster
• Reduced data motion 
•Larger blocks  gives higher locality in cache

• The Intel Xeon and 
AMD Opteron have 
SSE3
• 2 flops/cycle DP
• 4 flops/cycle SP

• IBM PowerPC has 
AltiVec
• 8 flops/cycle SP
• 4 flops/cycle DP

• No DP on AltiVec

Just able to do the Just able to do the Just able to do the Just able to do the mulmulmulmul----add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 
Gflop/sGflop/sGflop/sGflop/s of theoretical peakof theoretical peakof theoretical peakof theoretical peak

All this is single precisionAll this is single precisionAll this is single precisionAll this is single precision
Double precision is 78 Double precision is 78 Double precision is 78 Double precision is 78 Gflop/sGflop/sGflop/sGflop/s peak peak peak peak 
(Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed precprecprecprec))))



Idea Goes Something Like This…Idea Goes Something Like This…

• Exploit 32 bit floating point as much as 
possible.

� Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results
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refined results

• Intuitively: 

� Compute a 32 bit result, 

� Calculate a correction to 32 bit result using 
selected higher precision and,

� Perform the update of the 32 bit results with the 
correction using high precision. 



L U = lu(A)SINGLEO(n
3
)

x = L\(U\b)SINGLEO(n
2
)

r = b – AxDOUBLEO(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLEO(n
2
)

x = x + zDOUBLEO(n
1
)

r = b – AxDOUBLEO(n
2
)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

END

� Wilkinson, Moler, Stewart, &Higham provide error bound for SP fl pt 
results when using DP fl pt.



L U = lu(A)SINGLEO(n
3
)

x = L\(U\b)SINGLEO(n
2
)

r = b – AxDOUBLEO(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLEO(n
2
)

x = x + zDOUBLEO(n
1
)

r = b – AxDOUBLEO(n
2
)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

END

� Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.

� It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

• Single precision is faster than DP because:
� Higher parallelism within floating point units

• 4 ops/cycle (usually) instead of 2 
ops/cycleops/cycle

� Reduced data motion 

• 32 bit data instead of 64 bit data
� Higher locality in cache

• More data items in cache



300

350

400

450

500

Gf
lop

/s
Ax = Ax = bb

Single Precision

Double Precision

0

50

100

150

200

250

960 3200 5120 7040 8960 11200 13120

Matrix size

Gf
lop

/s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Double Precision



300

350

400

450

500

Gf
lop

/s
Ax = Ax = bb

Single Precision

Mixed Precision

Double Precision

0

50

100

150

200

250

960 3200 5120 7040 8960 11200 13120

Matrix size

Gf
lop

/s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Double Precision



Sparse Direct Solver and Iterative Sparse Direct Solver and Iterative 
RefinementRefinement

1.4

1.6

1.8

2

Speedup Over DP

Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which 
generates small dense matrix multiplies
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Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
• Outer/Inner Iteration Inner iteration:

In 32 bit floating point
Outer iterations using 64 bit floating point

58

• Outer iteration in 64 bit floating point and inner 
iteration in 32 bit floating point



2

Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers
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SP/DP iterative methods vs DP/DP
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Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

� Payoff in performance
• Faster floating point 

• Less data to move

• Automatically switch between SP and DP to match 
the desired accuracy
� Compute solution in SP and then a correction to the 

solution in DP

60

solution in DP

• Potential for GPU, FPGA, special purpose processors
� Use as little you can get away with and improve the 

accuracy

• Applies to sparse direct and iterative linear systems 
and Eigenvalue, optimization problems, where 
Newton’s method is used.

Correction = - A\(b – Ax)



A Call to ActionA Call to Action

• Hardware has changed dramatically while software 
ecosystem has remained stagnant

• Need to exploit new hardware trends (e.g., manycore, 
heterogeneity) that cannot be handled by existing 
software stack, memory per socket trends

• Emerging software technologies exist, but have not 

www.exascale.org

61

• Emerging software technologies exist, but have not 
been fully integrated with system software, e.g., UPC, 
Cilk, CUDA, HPCS

• Community codes unprepared for sea change in 
architectures

• No global evaluation of key missing components



International International ExascaleExascale Software Software 
ProgramProgram

Improve the world’s simulation and modeling 
capability by improving the coordination and 
development of the HPC software environment
Workshops:

Build an international plan for 
coordinating research for the next 

generation open source software for 
scientific high-performance 

computing

Workshops:

www.exascale.org



International Community International Community 
EffortEffort

� We believe this needs to be an international 
collaboration for various reasons including:
• The scale of investment

• The need for international input on requirements 

• US, Europeans, Asians, and others are working on 
their own software that should be part of a larger 
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• US, Europeans, Asians, and others are working on 
their own software that should be part of a larger 
vision for HPC.

• No global evaluation of key missing components

• Hardware features are uncoordinated with 
software development

www.exascale.org



Where We Are Today:Where We Are Today:

� SC08 (Austin TX) meeting to generate interest

� Funding from DOE’s Office of Science & NSF Office of 
Cyberinfratructure and sponsorship by Europeans and 
Asians

� US meeting (Santa Fe, NM) April 6-8, 2009 

� 65 people

� European meeting (Paris, France) June 28-29, 2009

� Outline Report

� Asian meeting (Tsukuba Japan) October 18-20, 2009

Apr 2009Apr 2009Apr 2009Apr 2009

Jun 2009Jun 2009Jun 2009Jun 2009

64
Nov 2008Nov 2008Nov 2008Nov 2008

� Asian meeting (Tsukuba Japan) October 18-20, 2009

� Draft roadmap

� Refine Report

� SC09 (Portland OR) BOF to inform others

� Public Comment; Draft Report presented

� European meeting (Oxford, UK) April 13-14, 2010

� Refine and prioritize roadmap 

� Explore governance structure and management 
models

� Maui Meeting October 18-19, 2010

� Kobe Meeting - Spring 2011

Oct 2009Oct 2009Oct 2009Oct 2009

Nov 2009Nov 2009Nov 2009Nov 2009

Apr 2010Apr 2010Apr 2010Apr 2010

Oct 2010Oct 2010Oct 2010Oct 2010



IESP IESP Executive CommitteeExecutive Committee

• Jack Dongarra, UTK & ORNL
• Pete Beckman, ANL
• Patrick Aerts, NWO Netherlands
• Franck Cappello, INRIA, France
• Thom Dunning, NCSA
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• Thom Dunning, NCSA
• Thomas Lippert, Juelich, Germany
• Satoshi Matsuoka, TiTech, Japan
• Paul Messina, ANL
• Anne Trefethen, Oxford, UK
• Mateo Valero, BSC, Spain

www.exascale.org



Roadmap PurposeRoadmap Purpose

• The IESP software roadmap is a planning 
instrument designed to enable the 
international HPC community to improve, 
coordinate and leverage their collective 
investments and development efforts.

• After we determine what needs to be 
accomplished, our task will be to construct 
the organizational structures suitable to 
accomplish the work

www.exascale.org



Roadmap ComponentsRoadmap Components
www.exascale.org



European European ExascaleExascale Software Software 
Initiative Initiative -- EESIEESI
� A detailed evaluation of how Europe is positioned, its strengths 
and weaknesses, in the overall international HPC landscape and 
competition

� Are European stakeholders willing/able to build an exa-scale prototype/by when?

� Actors/users/projects

� A European and international vision and roadmap
� Why is exa-scale initiatives important? Who cares? Impact?

� Scientific� Scientific

� Economic

� Social benefits

� Dissemination actions
� Visibility of EESI: who is the potential target public?

� R&D stakeholders

� EC and national policy-makers

� Society as a whole

� Identification of opportunities of worldwide collaborations
� European position inside IESP: who’s doing/deciding what?

� Contribution to the international dialogs: mutual benefits!

www.exascale.org



EC and G8 RelatedEC and G8 Related
• G8 has a call out for “Interdisciplinary Program on 
Application Software towards Exascale Computing 
for Global Scale Issues”
� 10 million € over three years
� An initiative between Research Councils from Canada, 
France, Germany, Japan, Russia, the UK, and the USA

� 78 preproposals submitted, 25 selected, expect to 
fund 6-10

www.exascale.org

fund 6-10
� Full proposals due August 25th

• EC FP7: Exascale computing, software and 
simulation
� Announcement due September 28, 2010
� 25 million €
� 2 or 3 integrated project to be funded



If you are wondering what’s beyond If you are wondering what’s beyond 
ExaFlopsExaFlops

Mega, Giga, Tera, 
Peta, Exa, Zetta …

103 kilo    

106 mega    

1024yotta

1027xona

1030weka

1033vunda

1036uda

1039treda
106 mega    

109giga

1012tera

1015peta

1018exa

1021zetta

10 treda

1042sorta

1045rinta

1048quexa

1051pepta

1054ocha

1057nena

1060minga

1063luma
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• www.exascale.org
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www.exascale.org



SummarySummary

• Major Challenges are ahead for extreme 
computing
� Power

� Parallelism 

� Hybrid

� Fault Tolerance � Fault Tolerance 

� … and many others not discussed here

• We will need completely new approaches and 
technologies to reach the Exascale level

• This opens up many new opportunities for 
applied mathematicians



• “We can only see a short distance 
ahead, but we can see plenty there 
that needs to be done.”

� Alan Turing (1912—1954)� Alan Turing (1912—1954)
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Shackleton’sShackleton’s Quote on Quote on ExascaleExascale

Ernest Shackleton’s 1907 ad in London’s Times, Ernest Shackleton’s 1907 ad in London’s Times, 
recruiting a crew to sail with him on his 
exploration of the South Pole

“Wanted. Men/women for hazardous architectures. Low 
wages. Bitter cold. Long hours of software 
development. Safe return doubtful. Honor and recognition 
in the event of success.”
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OneOne--Sided Dense Matrix FactorizationsSided Dense Matrix Factorizations
(LU, QR, and (LU, QR, and CholeskyCholesky))  from MAGMAfrom MAGMA

CommodityCommodityCommodityCommodity Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)
MATLAB MATLAB MATLAB MATLAB code    code    code    code    LAPACK LAPACK LAPACK LAPACK code                                    code                                    code                                    code                                    Hybrid Hybrid Hybrid Hybrid codecodecodecode

ExampleExampleExampleExample: Left-Looking Hybrid
Cholesky factorization

CUDA implementation:
�a_ref points to the GPU memory
� GPU kernels are started asynchronously which results in overlapping 
the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU

�For full details see http://www.cs.utk.edu/~tomov/magma/spotrf_gpu.cpp

MATLAB MATLAB MATLAB MATLAB code    code    code    code    LAPACK LAPACK LAPACK LAPACK code                                    code                                    code                                    code                                    Hybrid Hybrid Hybrid Hybrid codecodecodecode
(1) B = B – A*A'             ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0),  ...  )cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ... ) 

cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb)
(2) B = chol(B, 'lower')  spotrf_(“L”,  &nb,  hA(j, j),  lda,  info) cublasSgemm('N', 'T', j, ... )
(3) D = D – C*A'sgemm_(“N”,  “T”,  &j, ... )  spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda) 

(4) D = B\Dstrsm_(“R”, “L”, “T”, “N”,  &j, ... )               cublasStrsm('R', 'L', 'T', 'N', j, ... ) 



Communication Reducing Iterative Communication Reducing Iterative 
MethodsMethods

• Take k-steps of Krylov subspace method
� GMRES, CG, Lanczos, Arnoldi
� Assume matrix “well-partitioned,” with modest 

surface-to-volume ratio
� Parallel implementation

• Conventional: O(k log p) messages
• New: O(log p) messages - optimal• New: O(log p) messages - optimal

� Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

� Can incorporate some preconditioners
• Need to be able to “compress”  interactions between distant 

i, j
• Hierarchical, semiseparable matrices …

� Lots of speed up possible (modeled and measured)
• Price: some redundant computation



Minimizing Communication ofMinimizing Communication of GMRES GMRES 
to solve Ax=to solve Ax=bb

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

• Cost of k steps of standard GMRES vs new GMRES

Standard GMRES

for i=1 to k

w = A · v(i-1)

MGS(w, v(0),…,v(i-1))

update v(i), H

endfor

solve LSQ problem with H

Communication-avoiding GMRES

W = [ v, Av, A2v, … , Akv ]

[Q,R] = TSQR(W)  …  “Tall Skinny QR”

Build H from R, solve LSQ problem

solve LSQ problem with H

Sequential: #words_moved =

O(k·nnz) from SpMV

+ O(k2·n) from MGS

Parallel:  #messages = 

O(k) from SpMV

+ O(k2 · log p) from MGS

Sequential: #words_moved =

O(nnz) from SpMV

+ O(k·n)  from TSQR

Parallel: #messages = 

O(1) from computing W

+ O(logp) from TSQR

•Numerical issue with potential loss of precision 

from computing W from power method.



Systems in ItalySystems in Italy

Rank Site Manufact. Computer Cores

Rmax

Gflop/s

70 CINECA IBM Power 575, p6 4.7 GHz, Infiniband 5376 78680

129 Telecom IBM
BladeCenter HS22 Cluster, Xeon QC GT 
2.53 GHz, GigEthernet 8048 45528

Cluster Platform 3000 BL2x220, X56xx 3.0 
211 CILEA HP

Cluster Platform 3000 BL2x220, X56xx 3.0 
Ghz, Infiniband QDR 4032 35665

295
Energy 
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx 
2.66 GHz, Infiniband 3408 31310

296
Energy 
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx 
2.66 GHz, Infiniband 3408 31310

297
Energy 
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx 
2.66 GHz, Infiniband 3408 31310

404
Sardegna 
Ricerche HP

Cluster Platform 3000 BL460c G1, Xeon 
E5440 2.83 GHz, Infiniband 3088 27708



DP DP CholeskyCholesky with Multiple with Multiple GPUsGPUs

80



How to Code for How to Code for GPUsGPUs??

Complex question
� Language, programming model, user 

productivity, etc

Recommendations

� Use CUDA / OpenCL
[already demonstrated benefits in many areas;
data-based parallelism; move to support task- 1000 2000 3000 4000 5000 6000 7000
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data-based parallelism; move to support task-
based]

� Use GPU BLAS
[high level; available after introduction of 
shared memory –
can do data reuse; leverage existing 
developments ]

� Use Hybrid Algorithms
[currently GPUs – massive parallelism but serial 
kernel execution; 
hybrid approach – small non-parallelizable tasks 
on the CPU, large parallelizable tasks on the GPU 
]
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Scene
model Graphics pipelined

computation
Final
image

streams

of data

Repeated fast over and over: 

GPUsGPUsGPUsGPUs: excelling in graphics rendering 

Evolution of Evolution of GPUsGPUs

Repeated fast over and over: e.g. TV refresh rate is 30 fps; limit is 60 fps
This type of computation:

Requires enormous computational powerenormous computational powerenormous computational powerenormous computational power
Allows for high parallelismhigh parallelismhigh parallelismhigh parallelism
Needs high bandwidthhigh bandwidthhigh bandwidthhigh bandwidthvsvsvsvs low latencylow latencylow latencylow latency

( as low latencies can be compensated with deep graphics pipeline )

Obviously, this pattern of computation is common with 
many other applications

Currently, can be viewed as Currently, can be viewed as 
multithreaded multithreaded multithreaded multithreaded multicoremulticoremulticoremulticore vector unitsvector unitsvector unitsvector units



Moore’s Law ReinterpretedMoore’s Law Reinterpreted

• Number of cores per chip 
doubles every 2 year, while 
clock speed decreases (not 
increases).

• Need to deal with systems with 
millions of concurrent threads

• Future generation will have 
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Systems

• Future generation will have 
billions of threads!

• Need to be able to easily replace 
inter-chip parallelism with intro-
chip parallelism

• Number of threads of 
execution doubles every 2 
year 0
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Systems 2009 2015 2018

System peak 2 Pflop/s 100-200Pflop/s 1 Eflop/s

System memory 0.3 PB 5 PB 10 PB

Node performance 125 Gflop/s 400 Gflop/s 1-10 Tflop/s

Node memory BW 25 GB/s 200 GB/s >400 GB/s

Node concurrency 12 O(100) O(1000)

Potential System ArchitecturesPotential System Architectures
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Node concurrency 12 O(100) O(1000)

Interconnect BW 1.5 GB/s 25 GB/s 50 GB/s

System size (nodes) 18,700 250,000-500,000 O(106)

Total concurrency 225,000 O(108) O(109)

Storage 15 PB 150 PB 300 PB

IO 0.2 TB/s 10 TB/s 20 TB/s

MTTI days days O(1 day)

Power 7 MW ~10 MW ~20 MW



Conclusions Conclusions 

• For the last decade or more, the research 
investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the 
software side.  software side.  

• Moreover, the return on investment is more 
favorable to software.

� Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balance
� Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications



Collaborators / SupportCollaborators / Support
Employment opportunities for   

post-docs in the 
PLASMA/MAGMA projects

PLASMA Parallel Linear Algebra 
Software for Multicore
Architectures

http://icl.cs.utk.edu/plasma/http://icl.cs.utk.edu/plasma/

MAGMA Matrix Algebra on GPU 
and Multicore Architectures

http://icl.cs.utk.edu/magma/
Emmanuel Agullo, Jim Demmel, JackDongarra, BilelHadri,Jakub Kurzak, Julie&JulienLangou,HatemLtaief,PiotrLuszczek, Stan Tomov



� Strong scaling: fixed problem size.

• Data on each node decreases as the number of nodes 
increases

� Weak scaling: fixed the data size on each 
node.node.

• Problem size increases as the number of node 
increases.
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Symmetric Positive DefiniteSymmetric Positive Definite

200

250

300

Cholesky-GPU

Intel (R) Xeon (R) E5410 2.33 GHz ( 8 Core ) 

GForce GTX 280 1.3 GHz (240 Core)

Single Prec

Double Prec
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Double Prec

Iter Refine

GPUGPUGPUGPU : NVIDIA GeForce GTX 280                                      GPU BLAS GPU BLAS GPU BLAS GPU BLAS :  CUBLAS 2.2, s/dgemm peak: 375 / 75 GFlop/sCPUCPUCPUCPU : Intel Xeon dual socket quad-core @2.33 GHz     CPU BLAS CPU BLAS CPU BLAS CPU BLAS :  MKL 10.0     , s/dgemm peak: 17.5 / 8.6 GFlop/s



• Projections

� Performance

� Memory

• Async

� Break fork-join

� DAGs

� New algorithms – numerical issuesNew algorithms – numerical issues

� Communication avoiding

� Chaotic iteration

• Mixed precision

� Iter refine

� precond

• Hybrid

� balance

� autotune

• FT

� Number of approaches
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MAGMAMAGMA SoftwareSoftware

Available through MAGMA's homepage

http://icl.cs.utk.edu/magma/

Included are the 3 one-sided matrix factorizations

Iterative Refinement Algorithm (Mixed Precision)

Standard (LAPACK) data layout and accuracy Standard (LAPACK) data layout and accuracy 

Two LAPACK-style interfaces

� CPU interface: both input and output are on 

the CPU

� GPU interface: both input and output are on 

the GPU

This release is intended for single GPU



PurposePurpose
• The IESP software roadmap is a planning 

instrument designed to enable the 
international HPC community to improve, 
coordinate and leverage their collective 
investments and development efforts.
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• After we determine what needs to be 
accomplished, our task will be to construct 
the organizational structures suitable to 
accomplish the work

www.exascale.org



Diskless Diskless CheckpointingCheckpointing 1/21/2
Principle: Compute a checksum of the processes’ memory and 
store it on spare processors
Advantage: does not require ckpt on stable storage.
P1P1 P2P2 P3P3 P4P4 4 computing  processors

P1P1 P2P2 P3P3 PP44 PcPcP4P4 Add fifth “non computing”
processor

P1P1 P2P2 P3P3 P4P4 Start the computationPcPcPP44

A) Every process 

saves a copy of its 

local state of in 

P1P1 P2P2 P3P3 P4P4 Perform a checkpointPcPc+ P4P4+ + =

P1P1 P2P2 P3P3 P4P4 Continue the computationPcPcP4P4

....

P1P1 P2P2 P3P3 P4P4 Start the computationPcPcPP44 local state of in 

memory or local disc

B) Perform a global 

bitstream or floating 

point operation on all 

saved local states

P1P1 P2P2 P3P3 P4P4 FailurePcPcP4P4

P1P1 P3P3 PP44 Ready for recoveryPcPcP4P4

P1P1 P3P3 P4P4 Recover P2 dataPcPcP2P2 - - -=

All processes 

restore its local 

state from the one 

saved in memory 

or local disc



Diskless Diskless CheckpointingCheckpointing 2/22/2
•Could be done at application and system levels
•Process data could be considered (and encoded) 
either as bit-streams or as floating point numbers. 
Computing the checksum from bit-streams uses operations 
such as parity. Computing checksum from floating point 
numbers uses operations such as addition
•Can survive multiple failures of arbitrary patterns
Reed Solomon for bit-streams and weighted checksum for 
floating point numbers (sensitive to round-off errors).

Challenge: experiment more Diskless CKPT and Challenge: experiment more Diskless CKPT and 
in very large machines in very large machines (current result are for (current result are for ~~1000 CPUs)1000 CPUs)

•Need spare nodes and double the memory occupation (to survive failures during ckpt.) --> increases the overall cost and #failures
•Need coordinated checkpointing Need coordinated checkpointing Need coordinated checkpointing Need coordinated checkpointing or message logging protocolor message logging protocolor message logging protocolor message logging protocol
•Need very fast encoding & reduction operations
•Need automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modifications

floating point numbers (sensitive to round-off errors).
•Work with with incremental ckpt.



In 1984, Huang and Abraham, proposed the ABFT to detect and correct errors in 
some matrix operations on systolic arrays.
ABFT encodes data & redesign algo. to operate on encoded data. Failure are 
detected and corrected off-line (after execution).
ABFT variation for on-line recovery (runtime detects failures + robust to failures):

“Algorithmic Based Fault Tolerance”“Algorithmic Based Fault Tolerance”

•Similar to Diskless ckpt., an extra processor is 
added, Pi+1, store  the checksum of data: PP11 P2P2 P3P3 P4P4 PcPcP4P4

Works for many Linear Algebra operations:
Matrix Multiplication: A * B = C -> Ac * Br = Cf

LU Decomposition:     C = L * U -> Cf = Lc * Ur

Addition: A + B = C -> Af + Bf = Cf

Scalar Multiplication:  c * Af = (c * A)f

Transpose: AfT = (AT)f

Cholesky factorization & QR factorization

added, Pi+1, store  the checksum of data:
(vector X and Y in this case) 
Xc = X1 +…+Xp, Yc = Y1 +…+Yp.

Xf = [X1, …Xp, Xc], Yf = [Y1, …Yp, Yc], 
• Operations are performed on Xf and Yf
instead of X and Y : Zf=Yf+Zf
• Compared to diskless 
checkpointing, the memory 
AND CPU of Pc take part of 
the computation):
• No global operation for Checksum!
• No local checkpoint!

X1 X2 X3 X4 Xc
Y1 Y2 Y3 Y4 Yc

Z1 Z2 Z3 Z4 Zc

+

=



“Naturally fault tolerant algorithm” “Naturally fault tolerant algorithm” 

Natural fault tolerance is the ability to tolerate failures through the mathematical 
properties of the algorithm itself, without requiring notification or recovery.
The algorithm includes natural compensation for the lost information. 
For example, an iterative algorithm may require more iterations to converge, but it 
still converges despite lost information
Assumes that a maximum of 0.1% of tasks may fail

Meshless formulation of 2-D 

finite difference application

Assumes that a maximum of 0.1% of tasks may fail

Ex1 : Meshless iterative methods+chaotic relaxation 
(asynchronous iterative methods)

This algorithm share some features 
with SelfStabilization algorithms: 
detection of termination is very hard!
�it provides the max « eventually »…
BUT, it does not tolerate Byzantine 
faults (SelfStabilization does for 
transient failures + acyclic topology)



Proactive MigrationProactive Migration
•Principle: predict failures and migrate processes before failures
•Prediction models are based on the analysis of correlations between 
non fatal and fatal errors, and temporal and spatial correlations between 
failure events.
•Results on the 100 first days of BlueGene/L demonstrate good failure 
predictability: 50% of I/O failures could have been predicted (based on 
trace analysis). Note that Memory failures are much less predictable!
•Bad prediction has a cost (false positives and negatives have an impact 

Proactive migration may help to significantly increase the checkpoint 
interval.
Results are lacking concerning real time predictions and actual benefits of •Bad prediction has a cost (false positives and negatives have an impact 

on performance) -->false negatives impose to use rollback-recovery.

•Migration has a cost (need to checkpoint and log or delay messages)
•What to migrate?

•Virtual Machine, Process checkpoint?
•Only application state (user checkpoint)?

•What to do with predictable software failures?
�Migrate OR keep safe software and replace dynamically the software that is predicted to fail?
Challenge: Analyze more traces, Identify more Challenge: Analyze more traces, Identify more 
correlations, Improve predictive algorithmscorrelations, Improve predictive algorithms

Results are lacking concerning real time predictions and actual benefits of 
migration in real conditions   



Fault Recovery OptionsFault Recovery Options

• Saved State

• Restart – from 

checkpoint file

• Restart from local

• No Checkpoint

• Lossy recalculation of 

lost data

• Recalculate lost data 

from initial and 
checkpoint

• Recalculate lost 

data from in-

memory checkpoint 

(RAID like)

from initial and 

remaining data

• Replicate computation 

across system

• Reassign lost work to 

another resource

• Use natural fault 

tolerant algorithms



Fault Tolerance Fault Tolerance Fault Tolerance Fault Tolerance 

Hard errorsHard errorsHard errorsHard errors – permanent component failure either 
HW or SW (hung or crash)

Soft errorsSoft errorsSoft errorsSoft errors – transient errors, a blip or short term 
failure of either HW or SW

Silent errorsSilent errorsSilent errorsSilent errors – undetected errors either hard or soft, Silent errorsSilent errorsSilent errorsSilent errors – undetected errors either hard or soft, 
due to lack of detectors for a component or inability 
to detect (transient effect too short). Real danger is Real danger is Real danger is Real danger is 
that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t 
knowknowknowknow. 

HW (node and interconnect )resilience needed to HW (node and interconnect )resilience needed to HW (node and interconnect )resilience needed to HW (node and interconnect )resilience needed to 
reduce Silent errors reduce Silent errors reduce Silent errors reduce Silent errors –––– Either  turn them into Hard or Either  turn them into Hard or Either  turn them into Hard or Either  turn them into Hard or 
Soft errors  or fix themSoft errors  or fix themSoft errors  or fix themSoft errors  or fix them



Potential System ArchitecturePotential System Architecture

Systems 2009 2018 

System peak 2 Pflop/s 1 Eflop/s

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB 

Node performance 125 GF 1,2 or 15TF

Node memory BW 25 GB/s 2-4TB/s

Node concurrency 12 O(1k) or 10k

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

System size (nodes) 18,700 O(100,000) or O(1M)

Total concurrency 225,000 O(billion) [O(10) to O(100) for 
latency hiding]

Storage 15 PB 500-1000 PB (>10x system 
memory is min)

IO 0.2 TB 60 TB/s (how long to drain the 
machine)

MTTI days O(0.1 day)
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� Final R computedFinal R computedFinal R computedFinal R computed



3535rdrd List: The TOP10List: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of 
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS                 Oak 

Ridge Nat Lab
Jaguar / Cray 

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer 
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM 

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS /          U of 

Tennessee
Kraken/ Cray 

Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 2694

Tennessee Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research 

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in 

Tianjin / NUDT
Tianhe-1 / NUDT TH-1 / IntelQC

+  AMD ATI Radeon 4870 
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS          Argonne 

Nat Lab
Intrepid / IBM 

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA

Sandia Nat Lab
Red Sky / Sun /       SunBlade

6275
USA 42,440 .433 87 2.4 180
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Parallel Tasks in LUParallel Tasks in LU

• Break into smaller tasks and remove 
dependencies



Communication Avoiding QR Communication Avoiding QR 
ExampleExample
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LU Factorization in Double PrecisionLU Factorization in Double Precision
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FERMI MAGMA

INSTANBUL PLASMA

GTX 280 MAGMA

FERMIFERMIFERMIFERMI Tesla C2050: 448 CUDA cores @ 1.15GHzSP/DP peak is 1030 / 515 GFlop/sISTANBULISTANBULISTANBULISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHzSP/DP peak is 1075 / 538 GFlop/s



Parallel Tasks in Parallel Tasks in LU/LLT/QR

• Break into smaller tasks and remove dependencies
• Tile LU factorization on a square matrix with 5 x 5 tiles. Each 

tile is of size bxb and corresponds to a fine grain task. The 
arcs show the data dependencies between the tasks.arcs show the data dependencies between the tasks.

* LU does block pair wise pivoting



#3 LANL Roadrunner #3 LANL Roadrunner 
A A PetascalePetascale System in 2008System in 2008

“Connected Unit” cluster
192 Opteron nodes

(180 w/ 2 dual-Cell blades
connected w/ 4 PCIe x8 

links)

≈ 13,000 Cell HPC chips
≈ 1.33 1.33 1.33 1.33 PetaFlop/sPetaFlop/sPetaFlop/sPetaFlop/s (from Cell)
≈ 7,000 dual-core Opterons
≈ 122,000 cores≈ 122,000 cores≈ 122,000 cores≈ 122,000 cores

17 clusters17 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

2nd stage InfiniBand interconnect (8 switches)
Based on the 100 Gflop/s  (DP) Cell chipBased on the 100 Gflop/s  (DP) Cell chipBased on the 100 Gflop/s  (DP) Cell chipBased on the 100 Gflop/s  (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip

Cell chip for each core


