
Impact of Architecture and Impact of Architecture and
Technology for Extreme Scale on Technology for Extreme Scale on
Software and Algorithm DesignSoftware and Algorithm Design

9/8/2010 1

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory

University of Manchester

H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful

Computers in the World

- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem TPP performance

2

Ax=b, dense problem

- Updated twice a year

SC‘xy in the States in November

Meeting in Germany in June

- All data available from www.top500.org

Size

R
a

te

TPP performance

Performance DevelopmentPerformance Development

10000

100000

1000000

10000000

10000000

100 Tflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1.76 PFlop/s1.76 PFlop/s

24.7TFlop/s24.7TFlop/s

32.4PFlop/s32.4PFlop/s

SUM

N=1

0,1

1

10

100

1000

10000

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

10 Gflop/s

59.7 GFlop/s59.7 GFlop/s

400 MFlop/s400 MFlop/s

1.17 TFlop/s1.17 TFlop/s

N=1

N=500

6-8 years

My Laptop

1993 1995 1997 1999 2001 2003 2005 2007 2009
MyiPhone (40 Mflop/s)

Processors Used in the Top500 SystemsProcessors Used in the Top500 Systems

4

Intel 81%
AMD 10%
IBM 8%

Today’s Today’s MulticoresMulticores
99% of Top500 Systems Are Based on 99% of Top500 Systems Are Based on MulticoreMulticore

Sun Niagra2 (8 cores)
Intel Xeon(8 cores)

Of the Top500,
499 are multicore.

IBM Power 7 (8 cores)

5

Intel Knight’s Corner
(40 cores)

IBM BG/P (4 cores)

AMD MagnyCours
(12 cores)

Fujitsu Venus (8 cores)

Performance of Countries

100

1.000

10.000

100.000

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

T
fl

o
p

/s
]

US

0

1

10

100

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

Performance of Countries

100

1.000

10.000

100.000

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

T
fl

o
p

/s
]

US

EU

0

1

10

100

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

Performance of Countries

100

1.000

10.000

100.000

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

T
fl

o
p

/s
]

US

EU

Japan

0

1

10

100

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

Performance of Countries

100

1.000

10.000

100.000

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

T
fl

o
p

/s
]

US

EU

Japan

China

0

1

10

100

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

To
ta

l
P

e
rf

o
rm

a
n

ce
 [

Countries / System Share

7 systems in the Italy

June 2010: The TOP10June 2010: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS

Oak Ridge Nat Lab
Jaguar / Cray

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS /
U of Tennessee

Kraken/ Cray
Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 2694
U of Tennessee Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in

Tianjin / NUDT

Tianhe-1 / NUDT TH-1 /
IntelQC + AMD ATI Radeon

4870
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS

Argonne Nat Lab
Intrepid / IBM

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA
Sandia Nat Lab

Red Sky / Sun /
SunBlade 6275

USA 42,440 .433 87 2.4 180

June 2010: The TOP10June 2010: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS

Oak Ridge Nat Lab
Jaguar / Cray

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS /
U of Tennessee

Kraken/ Cray
Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 2694
U of Tennessee Cray XT5sixCore 2.6 GHz

USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in

Tianjin / NUDT

Tianhe-1 / NUDT TH-1 /
IntelQC + AMD ATI Radeon

4870
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS

Argonne Nat Lab
Intrepid / IBM

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA
Sandia Nat Lab

Red Sky / Sun /
SunBlade 6275

USA 42,440 .433 87 2.4 180

#1 #1 ORNL’sORNL’s Newest System Jaguar XT5 Newest System Jaguar XT5

Recently upgraded to a 2 Pflop/s

Office ofOffice ofOffice ofOffice of
ScienceScienceScienceScience

Recently upgraded to a 2 Pflop/s
system with more than 224K

cores using AMD’s 6 Core chip.

Peak performance 2.332 PF

System memory 300 TB

Disk space 10 PB

Disk bandwidth 240+ GB/s

Interconnect bandwidth 374 TB/s

#2 #2 –– National Supercomputer Center in National Supercomputer Center in

Shenzhen, China Shenzhen, China –– Dawning IntegratorDawning Integrator

♦ Nebulae
♦ Hybrid system, commodity + GPUs
♦ Theoretical peak 2.98Pflop/s
♦ Linpack Benchmark at 1.27 Pflop/s
♦ 4640 nodes, each node:
2 Intel 6-core Xeon5650 + Nvidia

♦ 4640 nodes, each node:
2 Intel 6-core Xeon5650 + Nvidia
Fermi C2050 GPU (each 14 cores)
�120,640 cores
�Infiniband connected

�500 MB/s peak per link and 8 GB/s

Commodity plus AcceleratorsCommodity plus Accelerators

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia C2050 “Fermi”
448 “Cuda cores”

1.15 GHz
448 ops/cycle

515 Gflop/s (DP)

CommodityCommodityCommodityCommodity Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)

07

15

Interconnect
PCI Express

512 MB/s to 32GB/s
8 MW – 512 MW

Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications
and encourage development of parallel processing)

� 1 GFlop/s; 1988; Cray Y-MP; 8 Processors

� Static finite element analysis

� 1 TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using a �Modeling of metallic magnet atoms, using a
variation of the locally self-consistent multiple
scattering method.

� 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors

� Superconductive materials

� 1 EFlop/s; ~2018; ?; 1x107 Processors (109 threads)

Performance Development in Top500

100000

1000000

10000000

10000000

1E+09

1E+10

1E+11

1 Eflop/s

100 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s SUM

N=1 Gordon

0,1

1

10

100

1000

10000

100000

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

2
0
1
8

2
0
2
0

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

N=1

N=500

Gordon
Bell

Winners

Potential System ArchitecturePotential System Architecture
with a cap of $200M and 20MW with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Potential System ArchitecturePotential System Architecture
with a cap of $200M and 20MW with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Potential System ArchitecturePotential System Architecture
with a cap of $200M and 20MW with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

ExascaleExascale (10(101818 Flop/Flop/ss) Systems:) Systems:
Two possible pathsTwo possible paths

• Light weight processors (think BG/P)

� ~1 GHz processor (109)

� ~1 Kilo cores/socket (103)

� ~1 Mega sockets/system (106)� ~1 Mega sockets/system (106)

• Hybrid system (think GPU based)

� ~1 GHz processor (109)

� ~10 Kilo FPUs/socket (104)

� ~100 Kilo sockets/system (105)

Factors that Necessitate Redesign of Factors that Necessitate Redesign of
Our SoftwareOur Software

• Steepness of the ascent from terascale
to petascale to exascale

• Extreme parallelism and hybrid design

• Preparing for million/billion way
parallelism

• Tightening memory/bandwidth
bottleneck

• Limits on power/clock speed 50.000

60.000

70.000

80.000

90.000

100.000

Average Number of Cores Per
Supercomputer for Top20

Systems

• Limits on power/clock speed
implication on multicore

• Reducing communication will become
much more intense

• Memory per core changes, byte-to-flop
ratio will change

• Necessary Fault Tolerance

• MTTF will drop

• Checkpoint/restart has limitations

Software infrastructure does not exist today

0

10.000

20.000

30.000

40.000

50.000

Moore’s Law reinterpretedMoore’s Law reinterpreted

• Number of cores per chip will double every
two years

• Clock speed will not increase (possibly
decrease) because of Power decrease) because of Power

• Need to deal with systems with millions of
concurrent threads

• Need to deal with inter-chip parallelism as
well as intra-chip parallelism

Major Changes to SoftwareMajor Changes to Software

• Must rethink the design of our
software
� Another disruptive technology

• Similar to what happened with cluster
computing and message passing

� Rethink and rewrite the applications,

24

� Rethink and rewrite the applications,
algorithms, and software

• Numerical libraries for example will
change
� For example, both LAPACK and

ScaLAPACK will undergo major changes
to accommodate this

Future Computer SystemsFuture Computer Systems
• Most likely be a hybrid design

• Think standard multicore chips and
accelerator (GPUs)

• Today accelerators are attached

• Next generation more integrated• Next generation more integrated

• Intel’s Larrabee? Now called “Knights
Corner” and “Knights Ferry” to come.

� 48 x86 cores

• AMD’s Fusion in 2011 - 2013

� Multicore with embedded graphics ATI

• Nvidia’s plans?
25

What’s Next?What’s Next?

All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core

All Small CoreAll Small Core

Many Small CoresMany Small Cores

Many Floating-
Point Cores

Different Classes of
Chips

Home
Games / Graphics
Business
Scientific

Five Important Software Features to Five Important Software Features to
Consider When Computing at ScaleConsider When Computing at Scale
1. Effective Use of Many-Core and Hybrid architectures

� Break fork-join parallelism

� Dynamic Data Driven Execution

� Block Data Layout

2. Exploiting Mixed Precision in the Algorithms

� Single Precision is 2X faster than Double Precision

� With GP-GPUs 10xWith GP-GPUs 10x

� Power saving issues

3. Self Adapting / Auto Tuning of Software

� Too hard to do by hand

4. Fault Tolerant Algorithms

� With 1,000,000’s of cores things will fail

5. Communication Reducing Algorithms

� For dense computations from O(n log p) to O(log p)
communications

� Asynchronous iterations

� GMRES k-step compute (x, Ax, A2x, … Akx)

27

LAPACK LU/LLLAPACK LU/LLTT/QR/QR

• Fork-join, bulk synchronous processing 28

Step 1 Step 2 Step 3 Step 4Step 4Step 4Step 4

• Break into smaller tasks and remove
dependencies

Parallel Tasks in Parallel Tasks in LU/LLT/QR

* LU does block pair wise pivoting

•Objectives

� High utilization of each core

� Scaling to large number of cores

� Shared or distributed memory

•Methodology

� Dynamic DAG scheduling

CholeskyCholesky

4 x 44 x 4

PLASMA: Parallel Linear Algebra PLASMA: Parallel Linear Algebra s/ws/w
for for MulticoreMulticore ArchitecturesArchitectures

� Explicit parallelism

� Implicit communication

� Fine granularity / block data layout

•Arbitrary DAG with dynamic scheduling

30

Fork-join
parallelism

DAG scheduled
parallelism

Time

Communication Avoiding AlgorithmsCommunication Avoiding Algorithms

• Goal: Algorithms that communicate as little as possible

• Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication.

• Direct methods (BLAS, LU, QR, SVD, other decompositions)

• Communication lower bounds for all these problems

• Algorithms that attain them (all dense linear algebra, some
sparse)

• Mostly not in LAPACK or ScaLAPACK (yet)• Mostly not in LAPACK or ScaLAPACK (yet)

• Iterative methods – Krylov subspace methods for Ax=b, Ax=λx

• Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

• Not in any libraries (yet)

• For QR Factorization they can show:

31

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1
T

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1
T Q2

T

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1
T Q2

T

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1
T Q2

T Q3
T

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

R
Q1

T Q2
T Q3

T

R

Standard QR Block ReductionStandard QR Block Reduction

• We have a mxnmatrix A we want to
reduce to upper triangular form.

RR

A = Q1Q2Q3R = QR

Q1
T Q2

T Q3
T

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16 cores.
Matrix size 51200 by 3200

Challenges of using Challenges of using GPUsGPUs

High levels of parallelism
Many GPU cores, serial kernel execution
[e.g. 240 in theNvidia Tesla; up to 512 in Fermi – to have concurrent kernel
execution]

Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural

46/29

Match algorithmic requirements to architectural
strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU]

Compute vs communication gap
Exponentially growing gap; persistent challenge
[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s
connection]

Hybrid ComputingHybrid Computing

Algorithms as DAGs Current hybrid CPU+GPU algorithms(small tasks/tiles for multicoremulticoremulticoremulticore) (small tasks for multicores and large tasks for GPUs)
Match algorithmic requirements to architectural strengths of the
hybrid components
Multicore: small tasks/tiles
Accelerator: large data parallel tasks

e.g. split the computation into tasks; define critical path that “clears” the way
for other large data parallel tasks; proper schedule the tasks execution

Design algorithms with well defined “search space” to facilitate auto-tuning

CholeskyCholesky on on multicoremulticore + multi+ multi--GPUsGPUs

HardwareHardwareHardwareHardware
•HOST: Two-dual core AMD Opteron 1.8GHz, 2GB
memory
•DEVICE:

–4 GPU TESLA C1070 1.44GHz
–240 computing cores per GPU–240 computing cores per GPU
–4GB memory per GPU
–Single precision floating point performance (NVIDIA
PEAK): 4.14 Tflop/s
–Memory bandwidth: 408 GB/s
–System interface: PCIexpress

Memory limitations prevented Memory limitations prevented Memory limitations prevented Memory limitations prevented runs on larger sizesruns on larger sizesruns on larger sizesruns on larger sizes

SP SP CholeskyCholesky on on MulticoreMulticore + Multi + Multi GPUsGPUs

800

1000

1200

Parallel Performance of the hybrid SPOTRF (4 Opteron 1.8GHz and 4 GPU TESLA C1060 1.44GHz)
1CPU-1GPU 2CPUs-2GPUs 3CPUs-3GPUs 4CPUs-4GPUs

49

0

200

400

600

0 5000 10000 15000 20000 25000

G
fl
o
p
/s

Matrix sizes

Performance of Single Precision Performance of Single Precision
on Conventional and on Conventional and GPU’sGPU’s

• Realized have the
similar situation on
our commodity
processors.
• That is, SP is 2X as

fast as DP on many
systems

• The Intel Xeon and

NVIDIA TeslaNVIDIA TeslaNVIDIA TeslaNVIDIA Tesla

Best case reality: 240 Best case reality: 240 Best case reality: 240 Best case reality: 240 mulmulmulmul----adds adds adds adds
per clockper clockper clockper clock

Just able to do the Just able to do the Just able to do the Just able to do the mulmulmulmul----add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624

Single precision is faster because:
•Operations are faster
• Reduced data motion
•Larger blocks gives higher locality in cache

• The Intel Xeon and
AMD Opteron have
SSE3
• 2 flops/cycle DP
• 4 flops/cycle SP

• IBM PowerPC has
AltiVec
• 8 flops/cycle SP
• 4 flops/cycle DP

• No DP on AltiVec

Just able to do the Just able to do the Just able to do the Just able to do the mulmulmulmul----add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624 add so 2/3 or 624
Gflop/sGflop/sGflop/sGflop/s of theoretical peakof theoretical peakof theoretical peakof theoretical peak

All this is single precisionAll this is single precisionAll this is single precisionAll this is single precision
Double precision is 78 Double precision is 78 Double precision is 78 Double precision is 78 Gflop/sGflop/sGflop/sGflop/s peak peak peak peak
(Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed (Factor of 8 from SP; exploit mixed precprecprecprec))))

Idea Goes Something Like This…Idea Goes Something Like This…

• Exploit 32 bit floating point as much as
possible.

� Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

51

refined results

• Intuitively:

� Compute a 32 bit result,

� Calculate a correction to 32 bit result using
selected higher precision and,

� Perform the update of the 32 bit results with the
correction using high precision.

L U = lu(A)SINGLEO(n
3
)

x = L\(U\b)SINGLEO(n
2
)

r = b – AxDOUBLEO(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLEO(n
2
)

x = x + zDOUBLEO(n
1
)

r = b – AxDOUBLEO(n
2
)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement

• Iterative refinement for dense systems, Ax = b, can work this
way.

END

� Wilkinson, Moler, Stewart, &Higham provide error bound for SP fl pt
results when using DP fl pt.

L U = lu(A)SINGLEO(n
3
)

x = L\(U\b)SINGLEO(n
2
)

r = b – AxDOUBLEO(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLEO(n
2
)

x = x + zDOUBLEO(n
1
)

r = b – AxDOUBLEO(n
2
)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement

• Iterative refinement for dense systems, Ax = b, can work this
way.

END

� Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

� It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108)

Results for Mixed Precision Iterative
Refinement for Dense Ax = b

• Single precision is faster than DP because:
� Higher parallelism within floating point units

• 4 ops/cycle (usually) instead of 2
ops/cycleops/cycle

� Reduced data motion

• 32 bit data instead of 64 bit data
� Higher locality in cache

• More data items in cache

300

350

400

450

500

Gf
lop

/s
Ax = Ax = bb

Single Precision

Double Precision

0

50

100

150

200

250

960 3200 5120 7040 8960 11200 13120

Matrix size

Gf
lop

/s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Double Precision

300

350

400

450

500

Gf
lop

/s
Ax = Ax = bb

Single Precision

Mixed Precision

Double Precision

0

50

100

150

200

250

960 3200 5120 7040 8960 11200 13120

Matrix size

Gf
lop

/s

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz.

Double Precision

Sparse Direct Solver and Iterative Sparse Direct Solver and Iterative
RefinementRefinement

1.4

1.6

1.8

2

Speedup Over DP

Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

57

G
64

S
i10H

16
airfoil_2d
bcsstk39
blockqp1
c-71

cavity26
daw

son5
epb3
finan512
heart1
kivap004
kivap006
m
ult_dcop_01

nasasrb
nem

eth26
qa8fk
rm

a10
torso2
venkat01
w
athen120

Ite ra tiv e R e fin e me n t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tim Davis's Collection, n=100K - 3M

Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
• Outer/Inner Iteration Inner iteration:

In 32 bit floating point
Outer iterations using 64 bit floating point

58

• Outer iteration in 64 bit floating point and inner
iteration in 32 bit floating point

2

Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

CG

PCG

GMRES

 PGMRES

Speedupsfor mixed precision

Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)

(Higher is better)

2

2

2

59

0

0.25

0.5

0.75

1

1.25

11,142 25,980 79,275 230,793 602,091

0
11,142 25,980 79,275 230,793 602,091

6,021 18,000 39,000 120,000 240,000

Matrix size

Condition number

Machine:

Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:

Relative to r0 residual reduction (10-12)

Iterations for mixed precision

SP/DP iterative methods vs DP/DP
(Lower is better)

Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

� Payoff in performance
• Faster floating point

• Less data to move

• Automatically switch between SP and DP to match
the desired accuracy
� Compute solution in SP and then a correction to the

solution in DP

60

solution in DP

• Potential for GPU, FPGA, special purpose processors
� Use as little you can get away with and improve the

accuracy

• Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where
Newton’s method is used.

Correction = - A\(b – Ax)

A Call to ActionA Call to Action

• Hardware has changed dramatically while software
ecosystem has remained stagnant

• Need to exploit new hardware trends (e.g., manycore,
heterogeneity) that cannot be handled by existing
software stack, memory per socket trends

• Emerging software technologies exist, but have not

www.exascale.org

61

• Emerging software technologies exist, but have not
been fully integrated with system software, e.g., UPC,
Cilk, CUDA, HPCS

• Community codes unprepared for sea change in
architectures

• No global evaluation of key missing components

International International ExascaleExascale Software Software
ProgramProgram

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment
Workshops:

Build an international plan for
coordinating research for the next

generation open source software for
scientific high-performance

computing

Workshops:

www.exascale.org

International Community International Community
EffortEffort

� We believe this needs to be an international
collaboration for various reasons including:
• The scale of investment

• The need for international input on requirements

• US, Europeans, Asians, and others are working on
their own software that should be part of a larger

63

• US, Europeans, Asians, and others are working on
their own software that should be part of a larger
vision for HPC.

• No global evaluation of key missing components

• Hardware features are uncoordinated with
software development

www.exascale.org

Where We Are Today:Where We Are Today:

� SC08 (Austin TX) meeting to generate interest

� Funding from DOE’s Office of Science & NSF Office of
Cyberinfratructure and sponsorship by Europeans and
Asians

� US meeting (Santa Fe, NM) April 6-8, 2009

� 65 people

� European meeting (Paris, France) June 28-29, 2009

� Outline Report

� Asian meeting (Tsukuba Japan) October 18-20, 2009

Apr 2009Apr 2009Apr 2009Apr 2009

Jun 2009Jun 2009Jun 2009Jun 2009

64
Nov 2008Nov 2008Nov 2008Nov 2008

� Asian meeting (Tsukuba Japan) October 18-20, 2009

� Draft roadmap

� Refine Report

� SC09 (Portland OR) BOF to inform others

� Public Comment; Draft Report presented

� European meeting (Oxford, UK) April 13-14, 2010

� Refine and prioritize roadmap

� Explore governance structure and management
models

� Maui Meeting October 18-19, 2010

� Kobe Meeting - Spring 2011

Oct 2009Oct 2009Oct 2009Oct 2009

Nov 2009Nov 2009Nov 2009Nov 2009

Apr 2010Apr 2010Apr 2010Apr 2010

Oct 2010Oct 2010Oct 2010Oct 2010

IESP IESP Executive CommitteeExecutive Committee

• Jack Dongarra, UTK & ORNL
• Pete Beckman, ANL
• Patrick Aerts, NWO Netherlands
• Franck Cappello, INRIA, France
• Thom Dunning, NCSA

65

• Thom Dunning, NCSA
• Thomas Lippert, Juelich, Germany
• Satoshi Matsuoka, TiTech, Japan
• Paul Messina, ANL
• Anne Trefethen, Oxford, UK
• Mateo Valero, BSC, Spain

www.exascale.org

Roadmap PurposeRoadmap Purpose

• The IESP software roadmap is a planning
instrument designed to enable the
international HPC community to improve,
coordinate and leverage their collective
investments and development efforts.

• After we determine what needs to be
accomplished, our task will be to construct
the organizational structures suitable to
accomplish the work

www.exascale.org

Roadmap ComponentsRoadmap Components
www.exascale.org

European European ExascaleExascale Software Software
Initiative Initiative -- EESIEESI
� A detailed evaluation of how Europe is positioned, its strengths
and weaknesses, in the overall international HPC landscape and
competition

� Are European stakeholders willing/able to build an exa-scale prototype/by when?

� Actors/users/projects

� A European and international vision and roadmap
� Why is exa-scale initiatives important? Who cares? Impact?

� Scientific� Scientific

� Economic

� Social benefits

� Dissemination actions
� Visibility of EESI: who is the potential target public?

� R&D stakeholders

� EC and national policy-makers

� Society as a whole

� Identification of opportunities of worldwide collaborations
� European position inside IESP: who’s doing/deciding what?

� Contribution to the international dialogs: mutual benefits!

www.exascale.org

EC and G8 RelatedEC and G8 Related
• G8 has a call out for “Interdisciplinary Program on
Application Software towards Exascale Computing
for Global Scale Issues”
� 10 million € over three years
� An initiative between Research Councils from Canada,
France, Germany, Japan, Russia, the UK, and the USA

� 78 preproposals submitted, 25 selected, expect to
fund 6-10

www.exascale.org

fund 6-10
� Full proposals due August 25th

• EC FP7: Exascale computing, software and
simulation
� Announcement due September 28, 2010
� 25 million €
� 2 or 3 integrated project to be funded

If you are wondering what’s beyond If you are wondering what’s beyond
ExaFlopsExaFlops

Mega, Giga, Tera,
Peta, Exa, Zetta …

103 kilo

106 mega

1024yotta

1027xona

1030weka

1033vunda

1036uda

1039treda
106 mega

109giga

1012tera

1015peta

1018exa

1021zetta

10 treda

1042sorta

1045rinta

1048quexa

1051pepta

1054ocha

1057nena

1060minga

1063luma

70

• www.exascale.org

71

www.exascale.org

SummarySummary

• Major Challenges are ahead for extreme
computing
� Power

� Parallelism

� Hybrid

� Fault Tolerance � Fault Tolerance

� … and many others not discussed here

• We will need completely new approaches and
technologies to reach the Exascale level

• This opens up many new opportunities for
applied mathematicians

• “We can only see a short distance
ahead, but we can see plenty there
that needs to be done.”

� Alan Turing (1912—1954)� Alan Turing (1912—1954)

73

Shackleton’sShackleton’s Quote on Quote on ExascaleExascale

Ernest Shackleton’s 1907 ad in London’s Times, Ernest Shackleton’s 1907 ad in London’s Times,
recruiting a crew to sail with him on his
exploration of the South Pole

“Wanted. Men/women for hazardous architectures. Low
wages. Bitter cold. Long hours of software
development. Safe return doubtful. Honor and recognition
in the event of success.”

75

OneOne--Sided Dense Matrix FactorizationsSided Dense Matrix Factorizations
(LU, QR, and (LU, QR, and CholeskyCholesky)) from MAGMAfrom MAGMA

CommodityCommodityCommodityCommodity Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)Accelerator (GPU)
MATLAB MATLAB MATLAB MATLAB code code code code LAPACK LAPACK LAPACK LAPACK code code code code Hybrid Hybrid Hybrid Hybrid codecodecodecode

ExampleExampleExampleExample: Left-Looking Hybrid
Cholesky factorization

CUDA implementation:
�a_ref points to the GPU memory
� GPU kernels are started asynchronously which results in overlapping
the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU

�For full details see http://www.cs.utk.edu/~tomov/magma/spotrf_gpu.cpp

MATLAB MATLAB MATLAB MATLAB code code code code LAPACK LAPACK LAPACK LAPACK code code code code Hybrid Hybrid Hybrid Hybrid codecodecodecode
(1) B = B – A*A' ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ...)cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)

cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb)
(2) B = chol(B, 'lower') spotrf_(“L”, &nb, hA(j, j), lda, info) cublasSgemm('N', 'T', j, ...)
(3) D = D – C*A'sgemm_(“N”, “T”, &j, ...) spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)

(4) D = B\Dstrsm_(“R”, “L”, “T”, “N”, &j, ...) cublasStrsm('R', 'L', 'T', 'N', j, ...)

Communication Reducing Iterative Communication Reducing Iterative
MethodsMethods

• Take k-steps of Krylov subspace method
� GMRES, CG, Lanczos, Arnoldi
� Assume matrix “well-partitioned,” with modest

surface-to-volume ratio
� Parallel implementation

• Conventional: O(k log p) messages
• New: O(log p) messages - optimal• New: O(log p) messages - optimal

� Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

� Can incorporate some preconditioners
• Need to be able to “compress” interactions between distant

i, j
• Hierarchical, semiseparable matrices …

� Lots of speed up possible (modeled and measured)
• Price: some redundant computation

Minimizing Communication ofMinimizing Communication of GMRES GMRES
to solve Ax=to solve Ax=bb

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

• Cost of k steps of standard GMRES vs new GMRES

Standard GMRES

for i=1 to k

w = A · v(i-1)

MGS(w, v(0),…,v(i-1))

update v(i), H

endfor

solve LSQ problem with H

Communication-avoiding GMRES

W = [v, Av, A2v, … , Akv]

[Q,R] = TSQR(W) … “Tall Skinny QR”

Build H from R, solve LSQ problem

solve LSQ problem with H

Sequential: #words_moved =

O(k·nnz) from SpMV

+ O(k2·n) from MGS

Parallel: #messages =

O(k) from SpMV

+ O(k2 · log p) from MGS

Sequential: #words_moved =

O(nnz) from SpMV

+ O(k·n) from TSQR

Parallel: #messages =

O(1) from computing W

+ O(logp) from TSQR

•Numerical issue with potential loss of precision

from computing W from power method.

Systems in ItalySystems in Italy

Rank Site Manufact. Computer Cores

Rmax

Gflop/s

70 CINECA IBM Power 575, p6 4.7 GHz, Infiniband 5376 78680

129 Telecom IBM
BladeCenter HS22 Cluster, Xeon QC GT
2.53 GHz, GigEthernet 8048 45528

Cluster Platform 3000 BL2x220, X56xx 3.0
211 CILEA HP

Cluster Platform 3000 BL2x220, X56xx 3.0
Ghz, Infiniband QDR 4032 35665

295
Energy
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx
2.66 GHz, Infiniband 3408 31310

296
Energy
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx
2.66 GHz, Infiniband 3408 31310

297
Energy
Company (A) IBM

BladeCenter HS22 Cluster, Xeon QC X56xx
2.66 GHz, Infiniband 3408 31310

404
Sardegna
Ricerche HP

Cluster Platform 3000 BL460c G1, Xeon
E5440 2.83 GHz, Infiniband 3088 27708

DP DP CholeskyCholesky with Multiple with Multiple GPUsGPUs

80

How to Code for How to Code for GPUsGPUs??

Complex question
� Language, programming model, user

productivity, etc

Recommendations

� Use CUDA / OpenCL
[already demonstrated benefits in many areas;
data-based parallelism; move to support task- 1000 2000 3000 4000 5000 6000 7000

0

50

100

150

200

250

300

350

400

GPU vs CPU GEMM

GPU SGEMM

GPU DGEMM

CPU SGEMM

CPU DGEMM

G
F

lo
p
/s

81/29

data-based parallelism; move to support task-
based]

� Use GPU BLAS
[high level; available after introduction of
shared memory –
can do data reuse; leverage existing
developments]

� Use Hybrid Algorithms
[currently GPUs – massive parallelism but serial
kernel execution;
hybrid approach – small non-parallelizable tasks
on the CPU, large parallelizable tasks on the GPU
]

Matrix size

1000 2000 3000 4000 5000 6000 7000

0

10

20

30

40

50

60

70

GPU vs CPU GEMV

GPU SGEMV

GPU DGEMV

CPU SGEMV

CPU DGEMV

Matrix size
G

F
lo

p
/s

Scene
model Graphics pipelined

computation
Final
image

streams

of data

Repeated fast over and over:

GPUsGPUsGPUsGPUs: excelling in graphics rendering

Evolution of Evolution of GPUsGPUs

Repeated fast over and over: e.g. TV refresh rate is 30 fps; limit is 60 fps
This type of computation:

Requires enormous computational powerenormous computational powerenormous computational powerenormous computational power
Allows for high parallelismhigh parallelismhigh parallelismhigh parallelism
Needs high bandwidthhigh bandwidthhigh bandwidthhigh bandwidthvsvsvsvs low latencylow latencylow latencylow latency

(as low latencies can be compensated with deep graphics pipeline)

Obviously, this pattern of computation is common with
many other applications

Currently, can be viewed as Currently, can be viewed as
multithreaded multithreaded multithreaded multithreaded multicoremulticoremulticoremulticore vector unitsvector unitsvector unitsvector units

Moore’s Law ReinterpretedMoore’s Law Reinterpreted

• Number of cores per chip
doubles every 2 year, while
clock speed decreases (not
increases).

• Need to deal with systems with
millions of concurrent threads

• Future generation will have

70.000

80.000

90.000

100.000

Average Number of Cores Per
Supercomputer for Top20

Systems

• Future generation will have
billions of threads!

• Need to be able to easily replace
inter-chip parallelism with intro-
chip parallelism

• Number of threads of
execution doubles every 2
year 0

10.000

20.000

30.000

40.000

50.000

60.000

Systems 2009 2015 2018

System peak 2 Pflop/s 100-200Pflop/s 1 Eflop/s

System memory 0.3 PB 5 PB 10 PB

Node performance 125 Gflop/s 400 Gflop/s 1-10 Tflop/s

Node memory BW 25 GB/s 200 GB/s >400 GB/s

Node concurrency 12 O(100) O(1000)

Potential System ArchitecturesPotential System Architectures

84

Node concurrency 12 O(100) O(1000)

Interconnect BW 1.5 GB/s 25 GB/s 50 GB/s

System size (nodes) 18,700 250,000-500,000 O(106)

Total concurrency 225,000 O(108) O(109)

Storage 15 PB 150 PB 300 PB

IO 0.2 TB/s 10 TB/s 20 TB/s

MTTI days days O(1 day)

Power 7 MW ~10 MW ~20 MW

Conclusions Conclusions

• For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side. software side.

• Moreover, the return on investment is more
favorable to software.

� Hardware has a half-life measured in years, while
software has a half-life measured in decades.

• High Performance Ecosystem out of balance
� Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications

Collaborators / SupportCollaborators / Support
Employment opportunities for

post-docs in the
PLASMA/MAGMA projects

PLASMA Parallel Linear Algebra
Software for Multicore
Architectures

http://icl.cs.utk.edu/plasma/http://icl.cs.utk.edu/plasma/

MAGMA Matrix Algebra on GPU
and Multicore Architectures

http://icl.cs.utk.edu/magma/
Emmanuel Agullo, Jim Demmel, JackDongarra, BilelHadri,Jakub Kurzak, Julie&JulienLangou,HatemLtaief,PiotrLuszczek, Stan Tomov

� Strong scaling: fixed problem size.

• Data on each node decreases as the number of nodes
increases

� Weak scaling: fixed the data size on each
node.node.

• Problem size increases as the number of node
increases.

87

88

Symmetric Positive DefiniteSymmetric Positive Definite

200

250

300

Cholesky-GPU

Intel (R) Xeon (R) E5410 2.33 GHz (8 Core)

GForce GTX 280 1.3 GHz (240 Core)

Single Prec

Double Prec

89

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000 7000

G
F

lo
p

s/
s

Dimension

Double Prec

Iter Refine

GPUGPUGPUGPU : NVIDIA GeForce GTX 280 GPU BLAS GPU BLAS GPU BLAS GPU BLAS : CUBLAS 2.2, s/dgemm peak: 375 / 75 GFlop/sCPUCPUCPUCPU : Intel Xeon dual socket quad-core @2.33 GHz CPU BLAS CPU BLAS CPU BLAS CPU BLAS : MKL 10.0 , s/dgemm peak: 17.5 / 8.6 GFlop/s

• Projections

� Performance

� Memory

• Async

� Break fork-join

� DAGs

� New algorithms – numerical issuesNew algorithms – numerical issues

� Communication avoiding

� Chaotic iteration

• Mixed precision

� Iter refine

� precond

• Hybrid

� balance

� autotune

• FT

� Number of approaches

90

MAGMAMAGMA SoftwareSoftware

Available through MAGMA's homepage

http://icl.cs.utk.edu/magma/

Included are the 3 one-sided matrix factorizations

Iterative Refinement Algorithm (Mixed Precision)

Standard (LAPACK) data layout and accuracy Standard (LAPACK) data layout and accuracy

Two LAPACK-style interfaces

� CPU interface: both input and output are on

the CPU

� GPU interface: both input and output are on

the GPU

This release is intended for single GPU

PurposePurpose
• The IESP software roadmap is a planning

instrument designed to enable the
international HPC community to improve,
coordinate and leverage their collective
investments and development efforts.

92

• After we determine what needs to be
accomplished, our task will be to construct
the organizational structures suitable to
accomplish the work

www.exascale.org

Diskless Diskless CheckpointingCheckpointing 1/21/2
Principle: Compute a checksum of the processes’ memory and
store it on spare processors
Advantage: does not require ckpt on stable storage.
P1P1 P2P2 P3P3 P4P4 4 computing processors

P1P1 P2P2 P3P3 PP44 PcPcP4P4 Add fifth “non computing”
processor

P1P1 P2P2 P3P3 P4P4 Start the computationPcPcPP44

A) Every process

saves a copy of its

local state of in

P1P1 P2P2 P3P3 P4P4 Perform a checkpointPcPc+ P4P4+ + =

P1P1 P2P2 P3P3 P4P4 Continue the computationPcPcP4P4

....

P1P1 P2P2 P3P3 P4P4 Start the computationPcPcPP44 local state of in

memory or local disc

B) Perform a global

bitstream or floating

point operation on all

saved local states

P1P1 P2P2 P3P3 P4P4 FailurePcPcP4P4

P1P1 P3P3 PP44 Ready for recoveryPcPcP4P4

P1P1 P3P3 P4P4 Recover P2 dataPcPcP2P2 - - -=

All processes

restore its local

state from the one

saved in memory

or local disc

Diskless Diskless CheckpointingCheckpointing 2/22/2
•Could be done at application and system levels
•Process data could be considered (and encoded)
either as bit-streams or as floating point numbers.
Computing the checksum from bit-streams uses operations
such as parity. Computing checksum from floating point
numbers uses operations such as addition
•Can survive multiple failures of arbitrary patterns
Reed Solomon for bit-streams and weighted checksum for
floating point numbers (sensitive to round-off errors).

Challenge: experiment more Diskless CKPT and Challenge: experiment more Diskless CKPT and
in very large machines in very large machines (current result are for (current result are for ~~1000 CPUs)1000 CPUs)

•Need spare nodes and double the memory occupation (to survive failures during ckpt.) --> increases the overall cost and #failures
•Need coordinated checkpointing Need coordinated checkpointing Need coordinated checkpointing Need coordinated checkpointing or message logging protocolor message logging protocolor message logging protocolor message logging protocol
•Need very fast encoding & reduction operations
•Need automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modificationsNeed automatic Ckpt protocol or program modifications

floating point numbers (sensitive to round-off errors).
•Work with with incremental ckpt.

In 1984, Huang and Abraham, proposed the ABFT to detect and correct errors in
some matrix operations on systolic arrays.
ABFT encodes data & redesign algo. to operate on encoded data. Failure are
detected and corrected off-line (after execution).
ABFT variation for on-line recovery (runtime detects failures + robust to failures):

“Algorithmic Based Fault Tolerance”“Algorithmic Based Fault Tolerance”

•Similar to Diskless ckpt., an extra processor is
added, Pi+1, store the checksum of data: PP11 P2P2 P3P3 P4P4 PcPcP4P4

Works for many Linear Algebra operations:
Matrix Multiplication: A * B = C -> Ac * Br = Cf

LU Decomposition: C = L * U -> Cf = Lc * Ur

Addition: A + B = C -> Af + Bf = Cf

Scalar Multiplication: c * Af = (c * A)f

Transpose: AfT = (AT)f

Cholesky factorization & QR factorization

added, Pi+1, store the checksum of data:
(vector X and Y in this case)
Xc = X1 +…+Xp, Yc = Y1 +…+Yp.

Xf = [X1, …Xp, Xc], Yf = [Y1, …Yp, Yc],
• Operations are performed on Xf and Yf
instead of X and Y : Zf=Yf+Zf
• Compared to diskless
checkpointing, the memory
AND CPU of Pc take part of
the computation):
• No global operation for Checksum!
• No local checkpoint!

X1 X2 X3 X4 Xc
Y1 Y2 Y3 Y4 Yc

Z1 Z2 Z3 Z4 Zc

+

=

“Naturally fault tolerant algorithm” “Naturally fault tolerant algorithm”

Natural fault tolerance is the ability to tolerate failures through the mathematical
properties of the algorithm itself, without requiring notification or recovery.
The algorithm includes natural compensation for the lost information.
For example, an iterative algorithm may require more iterations to converge, but it
still converges despite lost information
Assumes that a maximum of 0.1% of tasks may fail

Meshless formulation of 2-D

finite difference application

Assumes that a maximum of 0.1% of tasks may fail

Ex1 : Meshless iterative methods+chaotic relaxation
(asynchronous iterative methods)

This algorithm share some features
with SelfStabilization algorithms:
detection of termination is very hard!
�it provides the max « eventually »…
BUT, it does not tolerate Byzantine
faults (SelfStabilization does for
transient failures + acyclic topology)

Proactive MigrationProactive Migration
•Principle: predict failures and migrate processes before failures
•Prediction models are based on the analysis of correlations between
non fatal and fatal errors, and temporal and spatial correlations between
failure events.
•Results on the 100 first days of BlueGene/L demonstrate good failure
predictability: 50% of I/O failures could have been predicted (based on
trace analysis). Note that Memory failures are much less predictable!
•Bad prediction has a cost (false positives and negatives have an impact

Proactive migration may help to significantly increase the checkpoint
interval.
Results are lacking concerning real time predictions and actual benefits of •Bad prediction has a cost (false positives and negatives have an impact

on performance) -->false negatives impose to use rollback-recovery.

•Migration has a cost (need to checkpoint and log or delay messages)
•What to migrate?

•Virtual Machine, Process checkpoint?
•Only application state (user checkpoint)?

•What to do with predictable software failures?
�Migrate OR keep safe software and replace dynamically the software that is predicted to fail?
Challenge: Analyze more traces, Identify more Challenge: Analyze more traces, Identify more
correlations, Improve predictive algorithmscorrelations, Improve predictive algorithms

Results are lacking concerning real time predictions and actual benefits of
migration in real conditions

Fault Recovery OptionsFault Recovery Options

• Saved State

• Restart – from

checkpoint file

• Restart from local

• No Checkpoint

• Lossy recalculation of

lost data

• Recalculate lost data

from initial and
checkpoint

• Recalculate lost

data from in-

memory checkpoint

(RAID like)

from initial and

remaining data

• Replicate computation

across system

• Reassign lost work to

another resource

• Use natural fault

tolerant algorithms

Fault Tolerance Fault Tolerance Fault Tolerance Fault Tolerance

Hard errorsHard errorsHard errorsHard errors – permanent component failure either
HW or SW (hung or crash)

Soft errorsSoft errorsSoft errorsSoft errors – transient errors, a blip or short term
failure of either HW or SW

Silent errorsSilent errorsSilent errorsSilent errors – undetected errors either hard or soft, Silent errorsSilent errorsSilent errorsSilent errors – undetected errors either hard or soft,
due to lack of detectors for a component or inability
to detect (transient effect too short). Real danger is Real danger is Real danger is Real danger is
that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t that answer may be incorrect but the user wouldn’t
knowknowknowknow.

HW (node and interconnect)resilience needed to HW (node and interconnect)resilience needed to HW (node and interconnect)resilience needed to HW (node and interconnect)resilience needed to
reduce Silent errors reduce Silent errors reduce Silent errors reduce Silent errors –––– Either turn them into Hard or Either turn them into Hard or Either turn them into Hard or Either turn them into Hard or
Soft errors or fix themSoft errors or fix themSoft errors or fix themSoft errors or fix them

Potential System ArchitecturePotential System Architecture

Systems 2009 2018

System peak 2 Pflop/s 1 Eflop/s

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB

Node performance 125 GF 1,2 or 15TF

Node memory BW 25 GB/s 2-4TB/s

Node concurrency 12 O(1k) or 10k

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

System size (nodes) 18,700 O(100,000) or O(1M)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

Storage 15 PB 500-1000 PB (>10x system
memory is min)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

MTTI days O(0.1 day)

Communication Reducing QRCommunication Reducing QR
FactorizationFactorizationTS matrix

� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorization
� updating the trailing submatrix
� merge the domains

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrix
� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing updating the trailing updating the trailing updating the trailing submatrixsubmatrixsubmatrixsubmatrix

� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorization
� updating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrixupdating the trailing submatrix

� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorization
� updating the trailing submatrix
� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrix
� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrix
� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorizationpanel factorizationpanel factorizationpanel factorization

� updating the trailing submatrix
� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorization
� updating the trailing submatrix
� merge the domainsmerge the domainsmerge the domainsmerge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

TS matrix
� MT=6 and NT=3
� split into 2 domains

3 overlapped steps
� panel factorization
� updating the trailing submatrix
� merge the domains

Communication Reducing QRCommunication Reducing QR
FactorizationFactorization

August 28, 2009

� Final R computedFinal R computedFinal R computedFinal R computed

3535rdrd List: The TOP10List: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS Oak

Ridge Nat Lab
Jaguar / Cray

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS / U of

Tennessee
Kraken/ Cray

Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 2694

Tennessee Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in

Tianjin / NUDT
Tianhe-1 / NUDT TH-1 / IntelQC

+ AMD ATI Radeon 4870
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS Argonne

Nat Lab
Intrepid / IBM

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA

Sandia Nat Lab
Red Sky / Sun / SunBlade

6275
USA 42,440 .433 87 2.4 180

3535rdrd List: The TOP10List: The TOP10
Rank Site Computer Country Cores

Rmax
[Pflops]

% of
Peak

Power
[MW]

MFlops
/Watt

1
DOE / OS Oak

Ridge Nat Lab
Jaguar / Cray

Cray XT5sixCore 2.6 GHz
USA 224,162 1.76 75 7.0 251

2
Nat. Supercomputer
Center in Shenzhen

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia

C2050 GPU
China 120,640 1.27 43 2.58 493

3
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM

BladeCenterQS22/LS21
USA 122,400 1.04 76 2.48 446

4
NSF / NICS / U of

Tennessee
Kraken/ Cray

Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 2694

Tennessee Cray XT5sixCore 2.6 GHz
USA 98,928 .831 81 3.09 269

5
ForschungszentrumJueli

ch (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 .825 82 2.26 365

6
NASA / Ames Research

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 56,320 .544 82 3.1 175

7
National SC Center in

Tianjin / NUDT
Tianhe-1 / NUDT TH-1 / IntelQC

+ AMD ATI Radeon 4870
China 71,680 .563 46 1.48 380

8
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServerBlue Gene Solution
USA 212,992 .478 80 2.32 206

9
DOE / OS Argonne

Nat Lab
Intrepid / IBM

Blue Gene/P Solution
USA 163,840 .458 82 1.26 363

10
DOE / NNSA

Sandia Nat Lab
Red Sky / Sun / SunBlade

6275
USA 42,440 .433 87 2.4 180

Parallel Tasks in LUParallel Tasks in LU

• Break into smaller tasks and remove
dependencies

Communication Avoiding QR Communication Avoiding QR
ExampleExample

R
0

R
1

R
2

R
0

R
2

R
0 R R

D
1

Domain_Tile_QR

Domain_Tile_QR

D
0

D
1

D
0

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R
2

R
3

R
2

D
2

D
3

Domain_Tile_QR

Domain_Tile_QR

D
2

D
3

LU Factorization in Double PrecisionLU Factorization in Double Precision

150

200

250

G
F

lo
p

/s

120

0

50

100

1024 4032 7040 10112

G
F

lo
p

/s

Matrix Size

FERMI MAGMA

INSTANBUL PLASMA

GTX 280 MAGMA

FERMIFERMIFERMIFERMI Tesla C2050: 448 CUDA cores @ 1.15GHzSP/DP peak is 1030 / 515 GFlop/sISTANBULISTANBULISTANBULISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHzSP/DP peak is 1075 / 538 GFlop/s

Parallel Tasks in Parallel Tasks in LU/LLT/QR

• Break into smaller tasks and remove dependencies
• Tile LU factorization on a square matrix with 5 x 5 tiles. Each

tile is of size bxb and corresponds to a fine grain task. The
arcs show the data dependencies between the tasks.arcs show the data dependencies between the tasks.

* LU does block pair wise pivoting

#3 LANL Roadrunner #3 LANL Roadrunner
A A PetascalePetascale System in 2008System in 2008

“Connected Unit” cluster
192 Opteron nodes

(180 w/ 2 dual-Cell blades
connected w/ 4 PCIe x8

links)

≈ 13,000 Cell HPC chips
≈ 1.33 1.33 1.33 1.33 PetaFlop/sPetaFlop/sPetaFlop/sPetaFlop/s (from Cell)
≈ 7,000 dual-core Opterons
≈ 122,000 cores≈ 122,000 cores≈ 122,000 cores≈ 122,000 cores

17 clusters17 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

2nd stage InfiniBand interconnect (8 switches)
Based on the 100 Gflop/s (DP) Cell chipBased on the 100 Gflop/s (DP) Cell chipBased on the 100 Gflop/s (DP) Cell chipBased on the 100 Gflop/s (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip

Cell chip for each core

