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Performance Develo

pment
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« Processors Used in the Top500 Systems

Intel EME4T —__

.~ Others

-Intel IA-64
-Power
"-AMD x86_64
Intel 81%
AMD 10%

IBM 8%



¢ Today’s Multicores orve s

99% of Top500 Systems Are Based on Multicore
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Performance of Countries
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Total Performance [Tflop/s]
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Countries / System Share
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<= June 2010: The TOP10

. Rmax | % of
Rank Site Computer Country | Cores [Pflops] | Peak
DOE / OS Jaguar / Cray
1 | Oak Ridge Nat Lab | Cray XT5sixCore 2.6 GHz B A e IR
Nat. Subercombuter Nebulea / Dawning / TC3600
2 Center |F:| Shenzhen Blade, Intel X5650, Nvidia China 120,640, 1.27 43
C2050 GPU
DOE / NNSA Roadrunner / IBM
e Los Alamos Nat Lab BladeCenterQS22/L521 L 122,400, 1.04 76
NSF / NICS / Kraken/ Cray
a U of Tennessee Cray XTbsixCore 2.6 GHz SR LR e
ForschungszentrumJueli Jugene / IBM
< ch (FZT) Blue Gene/P Solution Sl @Rl D] R
NASA / Ames Research Pleiades / S6I
6 Center/NAS SGI Altix ICE 8200EX USA | 56,320) .544 | 82
. . Tianhe-1 / NUDT TH-1 /
7 | National SC Centerin | riolqc + AMD ATI Radeon|  China | 71,680 563 | 46
ianjin / NUDT 4870
DOE / NNSA BlueGene/L IBM
e Lawrence Livermore NL| eServerBlue Gene Solution L6 212,992 .478 80
DOE / OS Intrepid / IBM
2 Argonne Nat Lab Blue Gene/P Solution LR R A e
10 DOE / NNSA Red Sky / Sun / USA 42.440 | 433 87

Sandia Nat Lab

SunBlade 6275
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<= June 2010: The TOP10

. Rmax | % of |Power|MFlops
Rank Site Computer Country | Cores [Pflops] | Peak | [MW] | /Watt
DOE / OS Jaguar / Cray
1 | Oak Ridge Nat Lab | Cray XT5sixCore 2.6 GHz USA  1224.162) 176 | 75 ISt
Nat. Subercomputer Nebulea / Dawning / TC3600
2 Center 5\ Shenzhen Blade, Intel X5650, Nvidia China 120,640, 1.27 43 2.58 | 493
C2050 GPU
DOE / NNSA Roadrunner / IBM
< Los Alamos Nat Lab BladeCenterQS22/LS21 S 122,400, 1.04 76 LAk “Ak
NSF / NICS / Kraken/ Cray
4 U of Tennessee Cray XTbsixCore 2.6 GHz L 98,928 831 81 2 269
ForschungszentrumJueli Jugene / IBM
5 ch (FZT) Blue Gene/P Solution Germany |294,912| .825 82 2.26 | 365
NASA / Ames Research Pleiades / S6I
g Center/NAS SGI Altix ICE 8200EX USA 186,320 .544 | 82 | 3.1 | 175
. . Tianhe-1 / NUDT TH-1 /
7 | National SC Centerin | polQc + AMD ATI Radeon| China | 71,680 563 | 46 | 1.48 | 380
ianjin / NUDT 4870
DOE / NNSA BlueGene/L IBM
e Lawrence Livermore NL| eServerBlue Gene Solution L6 A TR =0 etz AL
DOE / OS Intrepid / IBM
2 Argonne Nat Lab Blue Gene/P Solution L SoOE s B RSN
10 ZOE /NS RSy 7 ey USA |42,440| 433 | 87 | 2.4 | 180

Sandia Nat Lab

SunBlade 6275
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«. #1 ORNL’s Newest System Jaguar XT5

e

Recently upgraded to a 2 Pflop/s
system with more than 224K
cores using AMD's 6 Core chip.

6.4 GB/s Direct

Connect
Peak performance 2.332 PF Fyportanspor

.

System memory 300 TB T
Disk space 10 PB R

Connect Memory

Disk bandwidth 240+ GB/s T Ay czasw

Cray SeaStar2+ |= * 74 Gflops per node
Interconnect iz * 16 GB of Shared

Interconnect bandwidth 374 TB/s | emn e oce

* Open MP Support

g8, U.S. DEPARTMENT OF

Office of
EN ERGY Science



¢ #2 — National Supercomputer Center in
Shenzhen, China — Dawning Integrator

¢ Nebulae

¢ Hybrid system, commodity + GPUs
¢ Theoretical peak2.98Pflop/s
¢ Linpack Benchmark at1.27 Pflop/s

¢ 4640 nodes, each node:
2 Intel 6-core Xeon5650 + Nvidia
Fermi C2050 GPU (each 14 cores)

» 120,640 cores
> Infiniband connected

>500 MB/s peak per link and 8 GB/s =
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<~ Commodity plus Accelerators

Commodity Accelerator (GPU)
Intel Xeon Nvidia C2050 “Fermi”
8 cores 448 “Cuda cores”
3 GHz 1.15 GHz
8*4 ops/cycle
96 Gflop/s (DP) ( 515 Gflop/s (DP))

[ Thread EXBruTion Contrel Unit
|

Host
Memory

Device Memory

Interconnect
07 P
12 MB/s to 32GB/s
8 MW -512 MW

15



A @ Looking at the Gordon Bell Prize

ll (Recognize outstanding achievement in high-performance computing applications
8@ and encourage development of parallel processing )

GFlop/s; 1988; Cray Y-MP; 8 Processors

Static finite element analysis

TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using a

variation of the locally self-consistent multiple
scattering method.

PFlop/s; 2008; Cray XT5; 1.5x10° Processors

Superconductive materials

EFlop/s; ~2018; 2; 1x107 Processors (107 ’r‘hljx‘eads)



Performance Development in Top500
-
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¢ Potential System Architecture
"~ with a cap of $200M and 20MW

System peak 2 Pflop/s
Power 6 MW
System memory 0.3PB
Node performance 125 GF
Node memory BW 25 GB/s
Node concurrency 12
Total Node Interconnect BW 3.5GB/s
System size (nodes) 18,700
Total concurrency 225,000
Storage 15 PB
10 0.2TB
MTTI days



¢ Potential System Architecture
~with a cap of $200M and 20MW

System peak 2 Pflop/s 1 Eflop/s
Power 6 MW ~20 MW
System memory 0.3 PB 32-64PB [ .03 Bytes/Flop ]
Node performance 125 GF 1,2 or 15TF
Node memory BW 25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ]
Node concurrency 12 O(1k) or 10k
Total Node Interconnect BW 3.5GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)
System size (nodes) 18,700 0(100,000) or O(1M)
Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]
Storage 15 PB 500-1000 PB (>10x system
memory is min)
10 0.2TB 60 TB/s (how long to drain the
machine)
MTTI days O(1 day)
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Potential System Architecture

- with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak
Power

System memory
Node performance
Node memory BW
Node concurrency

Total Node Interconnect BW

System size (nodes)

Total concurrency
Storage
10

MTTI

2 Pflop/s
6 MW
0.3PB
125 GF
25 GB/s

12
3.5GB/s

18,700
225,000

15 PB

0.2TB

days

1 Eflop/s 0(1000)
~20 MW
32 - 64 PB [ .03 Bytes/Flop ] 0(100)

1 0(10) - O(100)
2 - 4TB/s [ .002 Bytes/Flop 0(100)

O(1k) or 10k 0(100) - O(1000)

200-400GB/s
(1:4 or 1:8 from memory BW)

0(100,000) or O(1M)

0(100)

0(10) - O(100)
(billion) [O(10) to O(100) for
latency hiding

500-1000 PB (>10x system
memory is min)

60 TB/s (how long to drain the 0(100)

machine
O(1 day) - 0(10)

0(10,000)

0(10) - O(100)



¢. Exascale (10" Flop/s) Systems:
- Two possible paths

 Light weight processors (think BG/P)
= ~1 GHz processor (107)
= ~1 Kilo cores/socket (103)
= ~1 Mega sockets/system (10°9)

» Hybrid system (think GPU based)
= ~1 GHz processor (10°)
= ~10 Kilo FPUs/socket (10%)
= ~100 Kilo sockets/system (10°)



ICL

Factors that Necessitate Redesign of

Our Software

« Steepness of the ascent from terascale

to petascale to exascale

« Extreme parallelism and hybrid design

e Preparing for million/billion way
parallelism

e Tightening memory/bandwidth

bottleneck

e Limits on power/clock speed
implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change

e Necessary Fault Tolerance
e MTTF will drop
« Checkpoint/restart has limitations

Software infrastructure does not exist today

100.000

90.000

80.000

70.000

60.000

50.000

40.000

30.000

20.000

10.000

Average Number of Cores Per
Supercomputer for Top20

~ Systems
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< Moore’s Law reinterpreted

 Number of cores per chip will double every
two years

* Clock speed will not increase (possibly
decrease) because of Power

* Need to deal with systems with millions of
concurrent threads

* Need to deal with inter-chip parallelism as
well as intra-chip parallelism



ICL

“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

« Numerical libraries for example will
change

= For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this

24
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< Future Computer Systems

* Most likely be a hybrid design

* Think standard multicore chips and
accelerator (GPUs)

» Today accelerators are attached
* Next generation more integrated

* Intel’s Larrabee? Now called “Knights
Corner” and “Knights Ferry” to come.

= 48 x86 cores

 AMD’s Fusion in 2011 - 2013
= Multicore with embedded graphics ATI

* Nvidia’s plans?

25
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~ What’s Next?

Mixed Large i i

All Large Core and

Small Core
d ii i

dd

Many Small Cores

T

-

Different Classes of

—

Many Floating- photonic NoC

Point Cores _:"” 5 £ Chips
—— Home
Games / Graphics
3D memory .
Hyers Business
Scientific

n multi-core
processor layer
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IcLor-

Five Important Software Features to
Consider When Computing at Scale

1.

Effective Use of Many-Core and Hybrid architectures
= Break fork-join parallelism

= Dynamic Data Driven Execution

= Block Data Layout

Exploiting Mixed Precision in the Algorithms

= Single Precision is 2X faster than Double Precision

=  With GP-GPUs 10x

= Power saving issues

Self Adapting / Auto Tuning of Software

= Too hard to do by hand

Fault Tolerant Algorithms
=  With 1,000,000’s of cores things will fail

Communication Reducing Algorithms

= For dense computations from O(n log p) to O(log p)
communications

= Asynchronous iterations
=  GMRES k-step compute ( x, Ax, AZ2x, ... Akx)

27



£ LAPACK LU/LLT/QR

I il s

T

Step 1 > Step 2 > Step 3 > Step4 - --

l l l l
_ A _ A _ A _ A

S S A Y Y S e RN ]

» Fork-join, bulk synchronous processing =
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= Parallel Tasks in LU/LLT/QR

N[ | . -
Jl i .ﬁ

R — ——> Step4 .

° Break mto smaller tasks and remove

dependencies
N -EENE o -EEE : | ‘\I ®e® e
lHHﬁ'-Hlulli{: , = }00
o | mm |
O | O
E 17

* LU does block pair wise pivoting



£ PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

*Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores 4x4
= Shared or distributed memory

Methodology
= Dynamic DAG scheduling
= Explicit parallelism
= |Implicit communication
= Fine granularity / block data layout

-Arbltrary DAG with dynamic scheduling

LT

DAG scheduled
parallelism

i 30
Time >
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«--Communication Avoiding Algorithms

e Goal: Algorithms that communicate as little as possible

o Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication.

- Direct methods (BLAS, LU, QR, SVD, other decompositions)

« Communication lower bounds for all these problems

» Algorithms that attain them (all dense linear algebra, some

sparse)
e Mostly not in LAPACK or ScaLAPACK (yet)

« Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

e Not in any libraries (yet)
« For QR Factorization they can show:

Lower bound

# flops O(mn?)
4 words ©(ma

2
# messages | ©( 1;; =




.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.
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 We have a mxnmatrix A we want to
reduce to upper triangular form.
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.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.
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.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1TI »QZT] » 1



.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.

Q1TI » QZT] »QsTW



.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.

‘ R
Q1T » QZT » Q3T »



.4 Standard QR Block Reduction

 We have a mxnmatrix A we want to
reduce to upper triangular form.

‘ R
Q1T » QZT » Q3T »

A =Q,Q,Q.R = QR



¢. Communication Avoiding QR

ICL

___Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



¢. Communication Avoiding QR

ICL

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



c. Communication Avoiding QR

ICL

-
]

D, i-—)Doma n_Tile_QR
1

D, +=>Domajn_Tile_QR

Dy =>Domdin_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



c. Communication Avoiding QR

ICL

I T

1 M
Dy : omajn_Tile_QR i

1

: i

-
1

D, ;\—)Doma n_Tile_QR
1

D 2 =»Domajn_Tile_QR

| M | EN AN . )

1
1
D, +->Domain_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



c. Communication Avoiding QR

ICL

0 T

1 M
Dy : omajn_Tile_QR i

1

: i

D, =\—)Doma n_Tile_QR
1

1
W
L

D 2 =»Domajn_Tile_QR

| NS | SR PN |

I
I
L?Dom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



c. Communication Avoiding QR

ICL

0 T

1 M
Dy : omajn_Tile_QR i

1

: i

D, =\—)Doma n_Tile_QR
1

1
W
L

D 2 =»Domajn_Tile_QR

| NS | SR PN |

1
1
D, +->Domain_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.
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£ Communication Reducing QR

icLor- L4 o
Factorization
160
Theoretical Pe:
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120
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: Challenges of using GPUs

. High levels of parallelism
Many GPU cores, serial kernel execution

[ e.g. 240 in theNvidia Tesla; up to 512 in Fermi - to have concurrent kernel
execution ]

. Hybrid/heterogeneous architectures

Match algorithmic requirements to architectural
strengths

[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU ]

. Compute vs communication gap
Exponentially growing gap; persistent challenge

[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ]
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
0(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s

connection ] 46/29
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- Hybrid Computing

# Match algorithmic requirements to architectural strengths of the
hybrid components
Multicore: small tasks/tiles
Accelerator: large data parallel tasks

Algorithms as DAGs Current hybrid CPU+GPU algorithms
(small taskst/tiles for multicore) (small tasks for multicores and large tasks for GPUs)

-

1 GPU

b $<

l GPU

— 7

i

%
\{E
1
=5

/]

JH
Yl 7 7

» e.g. split the computation into tasks; define critical path that “clears” the way
for other large data parallel tasks; proper schedule the tasks execution

» Design algorithms with well defined “search space” to facilitate auto-tuning



L

«-  Cholesky on multicore + multi-GPUs

» Hardware
*HOST: Two-dual core AMD Opteron 1.8GHz, 2GB
memory
*DEVICE:
-4 GPU TESLA C1070 1.44GHz
—240 computing cores per GPU
-4GB memory per GPU

—-Single precision floating point performance (NVIDIA
PEAK): 4.14 Tflop/s

—Memory bandwidth: 408 GB/s
—System interface: PClexpress
» Memory limitations prevented runs on larger sizes



ICL

SP Cholesky on Multicore + Multi GPUs

1200

1000

800

Gflop/s

400

200

Parallel Performance of the hybrid SPOTRF (4 Opteron 1.8GHz and 4 GPU TESLA C1060 1.44GHz)

—&— 1CPU-1GPU

5000

—— 2CPUs-2GPUs

10000
Matrix sizes

3CPUs-3GPUs

15000

—&— 4CPUs-4GPUs

20000

25000



¢ Performance of Single Precision

IcLor-

___on Conventional and GPU’s

Realized have the
similar situation on
our commodity
processors.

« That s, SPis 2X as

fast as DP on many
systems

The Intel Xeon and
AMD Opteron have
SSE3

o 2 flops/cycle DP
e 4 flops/cycle SP

IBM PowerPC has
AltiVec

» 8 flops/cycle SP

e 4 flops/cycle DP
« No DP on AltiVec

@{3 )

RVIDIA.
NVIDIA Tesla

Best case reality: 240 mul-adds

per clock
Just able to do the mul-add so 2/3 or 624
Gflop/s of theoretical peak

All this is single precision
Double precision is 78 Gflop/s peak
(Factor of 8 from SP; exploit mixed prec)

Single precision is faster because:
*Operations are faster

» Reduced data motion

sLarger blocks gives higher locality in cache
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< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

 Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

51



N . . . . .
~ Mixed-Precision Iterative Refinement

« lterative refinement for dense systems, Ax = b, can work this
way.
L U = lu(A)SINGLEO(n’)
x = L\(U\b)SINGLEO(r®)
r = b - AxDOUBLEO(n®)
WHILE || r || not small enough
z = L\(U\r) )
x = x + zDOUBLEO(n')
r = b - AXDOUBLEO(n®)
END

= Wilkinson, Moler, Stewart, &Higham provide error bound for SP fl pt
results when using DP fl pt.



N . . . . .
~ Mixed-Precision Iterative Refinement

« lterative refinement for dense systems, Ax = b, can work this
way.
L U = lu(A)SINGLEO(n’)
x = L\(U\b)SINGLEO(r®)
r = b - AxDOUBLEO(n®)
WHILE || r || not small enough
z = L\(U\r) SINGLEO(n?)
x = x + zDOUBLEO(n')
r = b - AxDOUBLEO(n®)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

e O(n3) work is done in lower precision
e 0O(n2) work is done in high precision

e Problems if the matrix is ill-conditioned in sp; O(108)




£ Results for Mixed Precision Iterative
Refinement for Dense Ax = b

« Single precision is faster than DP because:
= Higher parallelism within floating point units

» 4 ops/cycle (usually) instead of 2
ops/cycle

= Reduced data motion

« 32 bit data instead of 64 bit data
= Higher locality in cache

* More data items in cache
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cwor AXx

500

Single Precision

450
400
350

300

Double Precision

Gflop/s

250
200
150
100

50

960 3200 5120 7040 8960 11200 13120

Matrix size

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.
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cLor AXx

500

Single Precision

450

400 : L.
Mixed Precision

350

300

Double Precision

Gflop/s

250

200
150

100

960 3200 5120 7040 8960 11200 13120

Matrix size

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz.,
3 GB memory, connected through PCle to a quad-core Intel @2.5 GHz.



¢ Sparse Direct Solver and Iterative
~ Refinement

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Opteron w/Intel compiler O fterative Refinement “* .
Speedu: Over DP @ Single Precision F'-:

oo | s
1 .G*J \T nl S ke
1.4 —1IH] A ¥ f
1.2-H LT- _ |

1 | i
0.8 N
0.6 ' »
0.4
0.2

ol

®5‘7 6)}06;'?/06/)%% 6/00 o\), 0(917; %, o | 5 4 !

& "< %639 490, "}?’)6\%0

'y 7R,
Tim Davis's Collection, n=100K - 3M
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< Sparse Iterative Methods (PCG)

e Quter/Inner lteration Inner iteration:
In 32 bit floating point

Outer iterations using 64 bit floating point

e, Compute %) = b — Az(®) for some initial guess (%)
Compute 7(%) = b — Az(® for some initial guess z(%) for i=12,...
N solve Mz(i=1) = p(i=1)
for 1 =1,2,... gy = Pli=17 =)

solve M z(i=1) = p(i-1) ifi=1
. e , pt) = 2@
Pi—-1 = ?"(1_1) Z(s_l) else
an . Bi—1 = pi-1/pi-2
ifz=1 i) = 26-1 4 g pfi=D)
1) 0 endif
pt) = ;0 g0 = Ap®
else @ = Pi—1/P(i)Tq(i)
) = =1) 4 q;p()
Bi_l — pi-l/pi-? r(i):r(i_lj_aiq(i)
ry f—1 F—1 check convergence; continue if necessary
p) = 20=1 4 gy pli=V) end
endif
D) = Apl)

a; = i1 /pV" ¢!

() = 2(i=1) 4 q,pl)

P(i) = pi=1) — q,;¢(0)

check convergence; continue if necessary
end

* Quter iteration in 64 bit floating point and inner
iteration in 32 bit floating point 58



0 Mixed Precision Computations for
“" Sparse Inner/Outer-type Iterative Solvers

222: Speedupsfor mixed precision
5] Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)
1757 (Higher is better)
1.57
1.251
o B CG?
0.751 - PCG2
0?2.:- B GMRES
o B PGMRES

11,142 25,980 79,275 230,793 602,091

1.25
Iterations for mixed precision

SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r, residual reduction (10'2)

0_

11,142 25,980 79,275 230,793 602,091 <+—— Matrix size

6,021 18,000 39,000 120,000 240,000 <—— (Condition number 59
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< |Intriguing Potential

- Exploit lower precision as much as possible
= Payoff in performance
» Faster floating point
e Less data to move
« Automatically switch between SP and DP to match
the desired accuracy
= Compute solution in SP and then a correction to the
solution in DP
» Potential for GPU, FPGA, special purpose processors
= Use as little you can get away with and improve the
aCccuracy
« Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where

Newton’s method is used. B J(xi)
Xi+l = X —

f(xi) S xi)
: tf‘, (xi ) Correction = - A\(b — Ax) -
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www.exascale.org

A Call to Action

61

& EXaSEALE

Hardware has changed dramatically while software
ecosystem has remained stagnant

Need to exploit new hardware trends (e.g., manycore,
heterogeneity) that cannot be handled by existing
software stack, memory per socket trends

Emerging software technologies exist, but have not
been fully integrated with system software, e.g., UPC,
Cilk, CUDA, HPCS

Community codes unprepared for sea change in
architectures

No global evaluation of key missing components



¢ International Exascale Software

~_Program

-vm?

, 1€ TERNATIONAL

‘l | |‘f S A

W EXASGALE
)

\‘!:D’ SOFTWARE PROJECT

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment

Workshops:

Build an international plan for
coordinating research for the next
generation open source software for
scientific high-performance
computing

www.exascale.org



¢ International Community

E"Up

FTWARE P
63

= We believe this needs to be an international
collaboration for various reasons including:

 The scale of investment
 The need for international input on requirements

« US, Europeans, Asians, and others are working on

their own software that should be part of a larger
vision for HPC.

* No global evaluation of key missing components

« Hardware features are uncoordinated with
software development

www.exascale.org
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& Where We Are Today:

& EXESERLE

O
°H

SCO8 (Austin TX) meeting to generate interest

Funding from DOE’s Office of Science & NSF Office of
Cyberinfratructure and sponsorship by Europeans and
Asians

US meeting (Santa Fe, NM) April 6-8, 2009
1 65 people
European meeting (Paris, France) June 28-29, 2009
[1 Outline Report
Asian meeting (Tsukuba Japan) October 18-20, 2009
1 Draft roadmap
[1 Refine Report
SCO09 (Portland OR) BOF to inform others
[0 Public Comment; Draft Report presented
European meeting (Oxford, UK) April 13-14, 2010
[0 Refine and prioritize roadmap

[0 Explore governance structure and management
models

Maui Meeting October 18-19, 2010

Nov 2008

Apr 2009

Jun 2009

Oct 2009

Nov 2009

Apr 2010

Oct 2010
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< |ESP Executive Committee

65

- Jack Dongarra, UTK & ORNL
 Pete Beckman, ANL

* Patrick Aerts, NWO Netherlands

* Franck Cappello, INRIA, France
 Thom Dunning, NCSA

 Thomas Lippert, Juelich, Germany
« Satoshi Matsuoka, TiTech, Japan

« Paul Messina, ANL

 Anne Trefethen, Oxford, UK

* Mateo Valero, BSC, Spain

www.exascale.org
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< Roadmap Purpose

* The IESP software roadmap is a planning
instrument designed to enable the
international HPC community to improve,
coordinate and leverage their collective
investments and development efforts.

« After we determine what needs to be
accomplished, our task will be to construct
the organizational structures suitable to
accomplish the work

www.exascale.org
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<~ Roadmap Components

& EXESEALe

www.exascale.org




¢. European Exascale Software

ICL

Initiative - EESI

= A detailed evaluation of how Europe is positioned, its strengths

and weaknesses, in the overall international HPC landscape and
competition

*  Are European stakeholders willing/able to build an exa-scale prototype/by when?

=  Actors/users/projects

= A European and international vision and roadmap

Why is exa-scale initiatives important? Who cares? Impact?
Scientific
Economic
Social benefits

= Dissemination actions

Visibility of EESI: who is the potential target public?
= R4&D stakeholders
» EC and national policy-makers
» Society as a whole

= Identification of opportunities of worldwide collaborations

European position inside IESP: who's doing/deciding what?
Contribution to the international dialogs: mutual benefits!

www.exascale.org
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EC and G8 Related

* 68 has a call out for "Interdisciplinary Program on
Application Software towards Exascale Computing
for Global Scale Issues”

= 10 million € over three years

= An initiative between Research Councils from Canada,
France, Germany, Japan, Russia, the UK, and the USA

= 78 preproposals submitted, 25 selected, expect to
fund 6-10

= Full proposals due August 25

- EC FP7: Exascale computing, software and
simulation
= Announcement due September 28, 2010
= 25 million €
= 2 or 3 integrated project to be funded

www.exascale.org



¢ If you are wondering what’s beyond
“" ExaFlops

10%4yotta
Mega, Giga, Tera, 10%/xona
30
Peta, Exa, Zetta .. 107" weka
1033vunda
1036uda
3 :
10 kilo 103%treda
10 mega
o 1042sorta
10°iga 104°rinta
10'2tera
1048quexa
10"5peta
10°Tpepta
10'8exa
10%1zetta 10>*ocha
10°’nena
109%minga

10%3luma
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* www.exascale.org
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< Summary

* Major Challenges are ahead for extreme
computing
= Power
= Parallelism
= Hybrid
= Fault Tolerance
= ... and many others not discussed here

* We will need completely new approaches and
technologies to reach the Exascale level

* This opens up many new opportunities for
applied mathematicians



« “We can only see a short distance
ahead, but we can see plenty there
that needs to be done.”

= Alan Turing (1912—1954)

73



Shackleton’s Quote on Exascale

i - .. ] :I

Ernest Shackleton’s 1907 ad in London’s Times,
recruiting a crew to sail with him on his
exploration of the South Pole

“‘Wanted. Men/women for hazardous architectures. Low

wages. Bitter cold. Long hours of software
development. Safe return doubtful. Honor and recognition

In the event of success.”
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- One-Sided Dense Matrix Factorizations
(LU, QR, and Cholesky) from MAGMA

[ Thread Execution Control Unit ]

Example: Left-Looking Hybrid

|
Cholesky factorization 180 Host ;
A
C D
Commodity Accelerator (GPU)
MATLAB code ILAPACK code Hybrid code
(1) B=B-A*A ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ... )cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)

cublasGetMatrix(nb, nb, 4, dA(j, j), *Ida, hwork, nb)

(2) B = chol(B, 'lower") spotrf_(“L”, &nb, hA(, j), Ida, info) cublasSgemm('N','T", ], ... )
(3) D =D - C*A'sgemm (“N”, “T", &j, ... ) spotrf_(“L", &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *Ida)

(4) D = B\Dstrsm_(‘R”, “L”, “T", “N”, &, ...) cublasStrsm(R', 'L','T', 'N", j, ...)

CUDA implementation:
«.a_ref points to the GPU memory
« GPU kernels are started asynchronously which results in overlapping
the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU
.For full details see http://www.cs.utk.edu/~tomov/magma/spotrf_gpu.cpp



. Communication Reducing Iterative
“" Methods

Take k-steps of Krylov subspace method
= GMRES, CG, Lanczos, Arnoldi

= Assume matrix “well-partitioned,” with modest
surface-to-volume ratio
= Parallel implementation
e Conventional: O(k log p) messages
e New: O(log p) messages - optimal
= Serial implementation
« Conventional: O(k) moves of data from slow to fast memory
 New: O(1) moves of data - optimal
= Can incorporate some preconditioners
 Need to be able to “compress” interactions between distant
1]
e Hierarchical, semiseparable matrices ...
= Lots of speed up possible (modeled and measured)
e Price: some redundant computation



¢ Minimizing Communication of GMRE
~_to solve Ax=b

GMRES: find x in span{b,Ab,...,Akb} minimizing | | Ax-b | |,
Cost of k steps of standard GMRES vs new GMRES

Standard GMRES Communication-avoiding GMRES
for i=1 to k W =[v, Ay, A%, ..., Aky ]
w=A - v(i-1) [Q,R] = TSQR(W) ... “Tall Skinny QR”
MGS(w, v(0),...,v(i-1)) Build H from R, solve LSQ problem
update v(i), H
endfor

solve LSQ problem with H

Sequential: #words_moved = Sequential: #words_moved =

O(k-nnz) from SpMV O(nnz) from SpMV

+ O(k-n) from TSQR

+ O(k?*n) from MGS (_ ) El
Parallel: #messages =

O(k) from SpMV + O(logp) from TSQR
+ O(k? - log p) from MGS

eNumerical issue with potential loss of precision
from computing W from power method.
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< Systems in ltaly

Rmax
Rank Site Manufact. Computer Cores  Gflop/s
70 CINECA IBM  Power 575, p6 4.7 GHz, Infiniband 5376 78680
BladeCenter HS22 Cluster, Xeon QC GT
129 Telecom IBM  2.53 GHz, GigEthernet 8048 45528
Cluster Platform 3000 BL2x220, X56xx 3.0
211 CILEA HP  Ghz, Infiniband QDR 4032 35665
Energy BladeCenter HS22 Cluster, Xeon QC X56xx
295 Company (A) IBM 2.66 GHz, Infiniband 3408 31310
Energy BladeCenter HS22 Cluster, Xeon QC X56xx
296 Company (A) IBM 2.66 GHz, Infiniband 3408 31310
Energy BladeCenter HS22 Cluster, Xeon QC X56xx
297 Company (A) IBM 2.66 GHz, Infiniband 3408 31310
Sardegna Cluster Platform 3000 BL460c G1, Xeon

404 Ricerche HP E5440 2.83 GHz, Infiniband 3088 27708



“~ DP Cholesky with Multiple GPUs

Soeed up of the hytrid JPOTEF (4 Opteron 1.8GHz anc 4 GPU TESLA G060 1.44CHz)
el

e 2 ASMA-MAGMA 4CFUs-4GPU

"LASMA-MAGMA 3CFUs-3GPU
e 2| ASMA-MAGMA 2CFUs-2GPU
2ng - | =——— 2L ASMA-MAGMA 1CFUs1GPU

Gflop/s

1040

S0

0 I I I I I I I
a 2020 4200 G000 8000 10000 12000 12000

Malrix Size




5 How to Code for GPUs?

GPU vs CPU GEMM

. Complex question o e e———
= Language, programming model, user 300 = GPU SGEMM
productivity, etc 250 ';Sgﬂ e
° a 2 v
. Recommendations £ o L
e
= Use CUDA / OpenCL et t——t—
[already demonstrated benefits in many areas; 0
data-based parallelism; move to support task- 1000 2000 3000 4000 5000 6000 7000
based] Matrix size
GPU vs CPU GEMV
= Use GPU BLAS 0
[high level; available after introduction of 60
shared memory - % = GPU SGEMV
can do data reuse; leverage existing *GPU DGEMV
40 &' CPU SGEMV
developments ] ¥ GPU DGEMV

30
= Use Hybrid Algorithms /—t—‘**
[currently GPUs - massive parallelism but serial 10

kernel execution; ol ; = = g
hybrid approach - small non-parallelizable tasks 1000 2000 3000 4000 5000 6000 7000
on the CPU, large parallelizable tasks on the GPU Matrix size

] 81/29

GFlop/s
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Evolution of GPUs

GPUs: excelling in graphics rendering

Scene =¥ Graphics pipelined —

., Final
model of data . .
— computation — Image

t |

Repeated faSt over and over. e.g. TV refresh rate is 30 fps; limit is 60 fps

« Currently, can be viewed as
multithreaded multicore vector units

This type of computation:
» Requires enormous computational power
» Allows for high parallelism

» Needs high bandwidth vs low latency
( as low latencies can be compensated with deep graphics pipeline )

Obviously, this pattern of computation is common with
many other applications



4
== Moore’s Law Reinterpreted

« Number of cores per chip Average Number of Cores Per
doubles every 2 year, while SUPercong)l;:ttee; sfor Top20
clock speed decreases (not oo
increases). 90.000

« Need to deal with systems with 8000
millions of concurrent threads  70.000

e Future generation will have 60.000
billions of threads!

50.000

« Need to be able to easily replace
inter-chip parallelism with intro-
chip parallelism 30.000
« Number of threads of
execution doubles every 2
year

40.000

20.000

10.000
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< Potential System Architectures

System peak 2 Pflop/s
System memory 0.3PB
Node performance 125 Gflop/s
Node memory BW 25 GB/s
Node concurrency 12
Interconnect BW 1.5 GB/s
System size (nodes) 18,700
Total concurrency 225,000
Storage 15 PB

10 0.2 TB/s
MTTI days

Power 7 MW
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Conclusions

For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

Moreover, the return on investment is more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured in decades.

High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
« No Moore’s Law for software, algorithms and applications



o Collaborators / Support

Employment opportunities for @ o
post-docs in the NVIDIA

PLASMA/MAGMA projects
“¢& 4\ The MathWorks \
PLASMA Parallel Linear Algebra 7 Microsoft: Rt

Software for Multicore
Architectures

http://icl.cs.utk.edu/plasma/

MAGMA Matrix Algebra on GPU GO Og [e

and Multicore Architectures
http//|C|CSutkedu/maqma/ Web Images Video MNews Maps Deskiop more »

dongarra Advanced Search

Preferences

[ Google Search ]I I'm Feeling Lucl-cyK Lanauaae Ti quage Tools

Emmanuel Agullo, Jim Demmel, Jack
Dongarra, BilelHadri,Jakub Kurzak,
Julie&JulienLangou,Hatem
Ltaief,PiOtrLuszczek, Stan TomOV Advertising Programs - Business Solutions - About Google

©2006 Google

Mew! Try Docs & Spreadsheets and share your projects instantly.
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= Strong scaling: fixed problem size.
« Data on each node decreases as the number of nodes
increases
= Weak scaling: fixed the data size on each
node.

e Problem size increases as the number of node
increases.

87



Review: two definitions of scalability

“Strong scaling”

¢ cXxXecufion time decreases in mverse
proportion to the number of
Processors

¢ fixed size problem overall
+ often instead graphed as reciprocal.
“speedup”
“Weak scaling”

¢ eXecufion tfime remains constant, as
problem size and processor number
are increased in proportion

l‘i-‘

IlllI==:::IIIIIIIIIIIIIIIIIIII EL-]

¢ fixed size problem per processor N«<p

+ Various sub-types of weak-scaling
“memory bound”, etc. (see Kumar et
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A 4 ° ° ° ° °
ICL
Symmetric Positive Definite
Cholesky-GPU
Intel (R) Xeon (R) E5410 2.33 GHz ( 8 Core)
GForce GTX 280 1.3 GHz (240 Core)
300
250 —o—Single Prec
200 ——o—Double Prec
= Iter Refine
& 150
B /
100
50 ‘—M —*
: /
0 1000 2000 3000 4000 5000 6000 7000
Dimension
GPU : NVIDIA GeForce GTX 280 GPUBLAS : CUBLAS 2.2, s/dgemm peak: 375 /75 GFlop/s

CPU : Intel Xeon dual socket quad-core @2.33 GHz CPUBLAS: MKL 10.0 , s/dgemm peak: 17.5/ 8.6 GFlop/s

89
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Projections

= Performance

= Memory

Async

= Break fork-join

= DAGs

= New algorithms - numerical issues
= Communication avoiding
= Chaotic iteration
Mixed precision

= |ter refine

= precond

Hybrid

= balance

= autotune

FT
= Number of approaches

90
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MAGMA Software

Available through MAGMA's homepage
http://icl.cs.utk.edu/magma/

Included are the 3 one-sided matrix factorizations
Iterative Refinement Algorithm (Mixed Precision)
Standard (LAPACK) data layout and accuracy

Two LAPACK-style interfaces

= CPU interface: both input and output are on
the CPU

= GPU interface: both input and output are on
the GPU

This release is intended for single GPU
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< Purpose

2« The IESP software roadmap is a planning
instrument designed to enable the
international HPC community to improve,
coordinate and leverage their collective
investments and development efforts.

« After we determine what needs to be
accomplished, our task will be to construct
the organizational structures suitable to
accomplish the work

www.exascale.org
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¢ Diskless Checkpointing 1/2

Principle: Compute a checksum of the processes’ memory and
store it on spare processors

Advantage: does not require ckpt on stable storage.

i 4 computing processorsj
Add fifth “ ting”
\ PG ifth “non computing

Processor

\

A) Every process
saves a copy of its
local state of in
memory or local disc

B) Perform a global
bitstream or floating
point operation on all
\

saved local states

Failure All processes
< restore its local

‘ \ Ready for recovery state from the one

< saved in memory
- Recover P2 data or local disc




4

T
ICL

Diskless Checkpointing 2/2

Could be done at application and system levels DODDODO @
| | E—r | ‘If
|

*Process data could be considered (and encoded)

either as bit-streams or as floating point numbers. E

Computing the checksum from bit-streams uses operations Encoding

such as parity. Computing checksum from floating point

i iti N s -

numbers uses operations such as addition kf;/ \F/gig \P{I&\D @ @

«Can survive multiple failures of arbitrary patterns

Reed Solomon for bit-streams and weighted checksum for 3 LG, ] ~(4)
ecovery

floating point numbers (sensitive to round-off errors).

*Work with with incremental ckpit.

*Need spare nodes and double the memory occupation (to survive failures
during ckpt.) --> increases the overall cost and #failures

*Need coordinated checkpointing or message logging protocol
*Need very fast encoding & reduction operations
*Need automatic Ckpt protocol or program modifications

=)
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<Algorithmic Based Fault Tolerance”

In 1984, Huang and Abraham, proposed the ABFT to detect and correct errors in
some matrix operations on systolic arrays.

ABFT encodes data & redesign algo. to operate on encoded data. Failure are
detected and corrected off-line (after execution).

ABFT variation for on-line recovery (runtime detects failures + robust to failures):

*Similar to Diskless ckpt., an extra processor is
added, Pi+1, store the checksum of data:

(vector X and Y in this case) X1 X2 X3 X4 Xc
_ _ +

Xc=X1+...4Xp, Yc=Y1 +...+Yp. vi Y2 Y3 Y4 Ve

Xt =[X1,...Xp, Xc], YT =[Y1, ...Yp, Yc],

» Operations are performed on Xf and Yf = 71 72 73 74 7c

instead of X and Y ; Zf=Yf+Zf

Works for many Linear Algebra operations:
« Compared to diskless Matrix Multiplication: A * B=C -> Ac * Br=Cf
Checkpointing, the memory LU Decomposition: C=L*U->Cf=Lc* Ur
AND CPU of Pc take part of Addition: A+B=C->Af+Bf=Cf
the computation): Scalar Multiplication: ¢ * Af =(c * A)f
« No global operation for Checksum! | Transpose: AT = (ATt
« No local checkpoint! Cholesky factorization & QR factorization




.?“Naturally fault tolerant algorithm”

Natural fault tolerance is the ability to tolerate failures through the mathematical
properties of the algorithm itself, without requiring notification or recovery.

The algorithm includes natural compensation for the lost information.

For example, an iterative algorithm may require more iterations to converge, but it.

still converges despite lost information

Assumes that a maximum of 0.1% of tasks may fail s °%
0@ TP g o

Ex1 : Meshless iterative methods+chaotic relaxatiog,,,

(asynchronous iterative methods)

o

© e

ooogoc

o3 G

oo ©

o0

]

o

8

O O o

@

o

Of_e_cl-

o0 -"’F o
AN

o o

o2 [

OOOO

oo 00, O

& o
0 00 )

eSS formulatlon of 2D

_,-u-"

eQ —

finite difference application

This algorithm share some features

with SelfStabilization algorithms:

.: U -

detection of termination is very hard!

—>it provides the max « eventually »...

BUT, it does not tolerate Byzantine
faults (SelfStabilization does for
transient failures + acyclic topology)

o I
~ ig“ﬁ
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*Prediction models are based on the analysis of correlations between
non fatal and fatal errors, and temporal and spatial correlations between
failure events.

¢ Proactive Migration

*Results on the 100 first davs of BlueGene/l. demonsirate aood failure
0 Proactive migration may help to significantly increase the checkpoint
t] interval.

Results are lacking concerning real time predictions and actual benefits of
migration in real conditions

*Migration has a cost (need to checkpoint and log or delay messages)
*\What to migrate?

\Virtual Machine, Process checkpoint?

*Only application state (user checkpoint)?
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<~ Fault Recovery Options

e Saved State

* Restart — from
checkpoint file

 Restart from local
checkpoint

* Recalculate lost
data from in-
memory checkpoint
(RAID like)

 No Checkpoint

Lossy recalculation of
lost data

Recalculate lost data
from initial and
remaining data

Replicate computation
across system

Reassign lost work to
another resource

Use natural fault
tolerant algorithms
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Fault Tolerance

Hard errors — permanent component failure either
HW or SW (hung or crash)

Soft errors — transient errors, a blip or short term
failure of either HW or SW

Silent errors — undetected errors either hard or soft,
due to lack of detectors for a component or inability
to detect (transient effect too short). Real danger is
that answer may be incorrect but the user wouldn’t
know.

HW (node and interconnect )resilience needed to
reduce Silent errors — Either turn them into Hard or
Soft errors or fix them



< Potential System Architecture

System peak
Power

System memory
Node performance
Node memory BW
Node concurrency

Total Node Interconnect BW

System size (nodes)

Total concurrency
Storage
10

MTTI

2 Pflop/s
6 MW
0.3 PB
125 GF
25 GB/s
12

3.5 GB/s

18,700
225,000

15 PB

0.2TB

days

1 Eflop/s
~20 MW

32 -64PB
1,2 or 15TF
2-4TB/s
O(1k) or 10k

200-400GB/s
(1:4 or 1:8 from memory BW)

0(100,000) or O(1M)

O(billion) [O(10) to O(100) for
latency hiding]

500-1000 PB (>10x system
memory is min)

60 TB/s (how long to drain the
machine)

0(0.1 day)
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< Factorization

>MT=oand NI=5
> split into 2 domains

3 overlapped steps
> panel factorization
> updating the trailing submatrix

> merge the domains

August 28, 2009
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<_Factorization

>MT1=oand NI=5
> split into 2 domains

3 overlapped steps

- panel factorization

August 28, 2009
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<_Factorization

>MT1=oand NI=5
> split into 2 domains

3 overlapped steps
- panel factorization
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< Factorization

>MT=oand N1=o5

> split into 2 domains
0
3 overlapped steps
0
0
- updating the trailing submatrix 0 0
0
- merge the domains
0
0
0 0
0 0
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< Factorization

>MT1=oand NI=5
> split into 2 domains

3 overlapped steps

. Final R computed 0 0 0
0 0 0
0 0 0

August 28, 2009
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35 List: The TOP10

. Rmax | % of
Rank i m r ntr r
2 Site Compute Country | Cores [Pflops] | Peak
DOE / OS Oak Jaguar / Cray
1 Ridge Nat Lab Cray XT5sixCore 2.6 GHz T e B Bl
B S D@ U Nebulea / Dawning / TC3600
2 Cer;terF;n Shenl;hen Blade, Intel X5650, Nvidia China 120,640 1.27 43
C2050 GPU
DOE / NNSA Roadrunner / IBM
3 Los Alamos Nat Lab BladeCenterQS22/L521 SR 122,400| 1.04 76
NSF / NICS / U of Kraken/ Cray
4 Tennessee Cray XT5sixCore 2.6 GHz L 98,928 -831 81
5 ForschungszentrumJueli Jugene / IBM Germany | 294,912 825 -

ch (FZJ) Blue Gene/P Solution

6 NASA / Ames Research Pleiades / SGI USA

Center/NAS SGI Altix ICE 8200EX 56,320 | .544 82

National SC Center in ' Tianhe-1 / NUDT TH-1 / IntelQC

/ Tianjin / NUDT + AMD ATI Radeon 4870 Shiga ST o g
DOE / NNSA BlueGene/L IBM
8 Lawrence Livermore NL eServerBlue Gene Solution HRE Al A e
DOE / OS Argonne Intrepid / IBM
9 Nat Lab Blue Gene/P Solution USA 163,840 -458 82
10 DOE / NNSA Red Sky / Sun / SunBlade USA 42,440 433 87

Sandia Nat Lab

6275
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35 List: The TOP10

Rank

10

Site Computer

DOE / OS
Ridge Nat Lab

Oak Jaguar / Cray

Cray XT5sixCore 2.6 GHz

Nebulea / Dawning / TC3600
Blade, Intel X5650, Nvidia
C2050 GPU

Nat. Supercomputer
Center in Shenzhen

DOE / NNSA Roadrunner / IBM
Los Alamos Nat Lab BladeCenterQS22/LS21
NSF / NICS / U of Kraken/ Cray
Tennessee Cray XT5sixCore 2.6 GHz

ForschungszentrumJueli
ch (FZJ)

Jugene / IBM
Blue Gene/P Solution

NASA / Ames Research
Center/NAS

Pleiades / SGI
SGI Altix ICE 8200EX

Tianhe-1 / NUDT TH-1 / IntelQC
+ AMD ATI Radeon 4870

BlueGene/L IBM
eServerBlue Gene Solution

National SC Center in
Tianjin / NUDT

DOE / NNSA
Lawrence Livermore NL

DOE / OS Argonne Intrepid / IBM
Nat Lab Blue Gene/P Solution
DOE / NNSA Red Sky / Sun / SunBlade

Sandia Nat Lab 6275

Country

USA

China

USA

USA

Germany

USA

China

USA

USA

USA

Cores

224,162

120,640

122,400

98,928

294,912

56,320

71,680

212,992

163,840

42,440

Rmax
[Pflops] | Peak | [MW]

1.76 75 7.0
1.27 43 2.58
1.04 76 2.48
.831 81 3.09
.825 82 2.26

.544 82 3.1

.563 46 1.48
.478 80 2.32
.458 82 1.26
.433 87 2.4

% of Power/MFlops

/Watt

251

493

446

269

365

175

380

206

363

180
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< Parallel Tasks in LU
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c. Communication Avoiding QR

ICL

0 T

1 M
Dy : omajn_Tile_QR i

1

: i

D, =\—)Doma n_Tile_QR
1

1
W
L

D 2 =»Domajn_Tile_QR

| NS | SR PN |

I
I
L?Dom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In 7he 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



ICL

LU Factorization in Double Precision

250
200
— 4“___-—*-_‘
o 150 ¢
~~
3 -&-FERMI MAGMA
TH ——|INSTANBUL PLASMA
G 100
GTX 280 MAGMA
50
r's
0
1024 4032 7040 10112

Matrix Size
SP/DP peak is 1030 / 515 GFlop/s

SP/DP peak is 1075 / 538 GFlop/s

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz

120
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= Parallel Tasks in LU/LLT/QR

N|
= N[ N

1N =

Step1 —» Step2 —» Step3d —> Stepd - ..

* Break into smaller tasks and remove dependencies

« Tile LU factorization on a square matrix with 5 x 5 tiles. Each
tile is of size bxb and corresponds to a fine grain task. The
arcs show the data dependencies between the tasks.

I [ ] v v ¥

10| (12| |13 |La] |1s ® ® @
T ¥ v ¥

2,1 2,2 2,3 2,4 2:5 ‘ .
T A A 2 A 1

3,1 3,2 3,3 3,4 3,5

X T W v v ®
4,1 4,2 4,3 4,4 4.5

v ¥ ¥ ¥ 1

5J1 512 5;3 5;4 5;5

* LU does block pair wise pivoting



o #3 LANL Roadrunner
o A Petascale System in 2008

“Connected Unit” cluster = 13,000 Cell HPC chips
192 Opteron nodes = 1.33 PetaFlop/s (from Cell)
(180 w/ 2 dual-Cell blades = 7,000 dual-core Opterons
connected w/ 4 PCle x8 ~ 122,000 cores

lINks)
m oo 17 clusters
e o o

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

DuI Cpteron Chip



