

IBM Solutions for High Performance Computing looking at Large Scale Infrastructures

Euro-Par 2010, Ischia (Italy), Aug 31st – Sept 3rd 2010

Marco Briscolini IBM Italy Deep Computing Sales http://www.ibm.com/systems/deepcomputing/ marco_briscolini@it.ibm.com

Digital Media

Digital content creation, management and distribution, online gaming, surveillance **Supercomputing driving leading**

Petroleum

Oil and gas exploration and production

Automotive/Aerospace Engineering

Automotive, Aerospace and Defense **Electronics & Engineering**

Life Sciences

Research, drug discovery, diagnostics, information-based medicine

High Performance

edge applications

Electronic Design **Automation**

Financial Services

Optimizing IT infrastructure, risk management and compliance, analytics

Government & Scientific research. Higher Education classified/defense, weather/environmental sciences

IBM Research Labs around the World

IBM Research

IBM Research

Major Initiatives: 2010 Big Bets

Healthcare Transformation **Smarter Cities** Service Quality Mobile Web **Massive Scale Analytics Cloud Computing** Workload-Optimized Systems

Nanotech

@ 2010 IDM C------

IBM iDataPlex higher density for Intel x86 Cluster solution

© 2010 IBM Corporation

Global Technology Outlook 2010 - IBM Confidential - Do not Distribute

iDataPlex Rack Design

- Energy efficiency The iDataPlex rack structure is optimized for datacenter cooling efficiency, density and deployment flexibility
 - Half-depth rack optimizes airflow for cooling efficiency
 - Reduces pressure drop to improve chilled air efficiency
- Leadership density 100U Rack: 84 U of server and storage and 16 U of switch and PDU space in standard rack footprint
 - Dual column / Half depth rack
 - Std 2 floor tile rack footprint
 - Up to 168 physical nodes in 8 sq ft
- Flexibility: Fits in today's data center, optimized for tomorrow's
 - Matches US & European data center floor tile standards
 - Compatible with standard forced air environments
- Ease of use: All service and cabling from the front

iDataPlex Server Design

iDataPlex – Continued Innovation from System x!

8

IBM dx360 M3 integrates 2 x GPGPU

May 18, 2010 Launch

dx360 M3 Refresh - Server GPU Configuration Announce – May 18, 2010 : Ship Support – July 1, 2010

iDPX: Do More with Maximum Performance Density

May 18, 2010 Launch

Do More with Maximum Performance Density

dx360 M3

008

Xeon X5670

2.93GHz / 6C / 95W

Compared to first-generation Intel® Xeon® processor-based iDataPlex servers, the dx360 M3 server with 2 GPUs improves performance density in the data center for massive parallel computations after software porting dx360 M3 Refresh

- 49 Teraflops of Sustained performance
- 4X increased performance per rack
- 10X increased performance per node
- 65% Less acquisition costs
- 3.7X increase in Flops/Watt

dx360 M2

Xeon X5570 2.93GHz / 4C /

95W

672

......

IBM Power Technology in Large Scale System

© 2010 IBM Corporation

Power Systems HPC Roadmap Power 755, Blue Gene, Power 575

NAMD 2.7b1

STMV Benchmark: 1,066,628 atoms, 12A cutoff + PME every 4 Steps, periodic, total 500 Steps

Elapsed Time in seconds per step – A lower number indicates better performance

- Power 755 benchmarks were performed in Single Thread Mode and two-threaded Simultaneous Multithreading Mode
- Sun X6275 data current as of 1/24/2010, http://blogs.sun.com/BestPerf/entry/sun_blade_6048_and_sun1
- IBM data current as of 1/24/2010.

POWER7 Architecture – Key features for HPC

Key Features:

- 8 Cores
- Core frequency : 3 ~ 4 GHz
- On Chip 4MB L3 Cache/core
- Extended SIMD Support
 - o Altivec same as in Power6 and PPC 970
 - o VSX 145 instruction set
 - 4 DP FMAs /cycle
- Multiple Memory Controllers
- 3rd Generation Multi-Threading
 - o Enhanced performance
- DDR3 memory support (1066, 1333 MHz)
- 4th Generation SMP Fabric Bus
- Other:
 - o Stride N prefetching

Entry (HV) Up to 32 Cores	Compute / Cluster (575) PERCS 2U Building Blocks	High End Up to 200+ Cores
	IBM	IBM
Blade Up to 16 Cores Up to 8 Cores		
2/4s Blades and Racks	Compute Intensive Quad-chip MCM	High-End and Mid-Range Single Chip Glass Ceramic

1 Memory Controller 3 4B local links

IBM Solutions for HPC, Ischia, Aug 31st – Sept 3rd 2010

8 Memory Controller 3 16B local links (on MCM) 2 Memory Controllers 3 8B local links 2 28B Beneste links

17

Compute cluster (575) Building Blocks: around 100TFLOPs in one rack

Blue Gene technology roadmap

Manycore Technology Trends

© 2010 IBM Corporation

Servers will have thousands of execution threads available

Linear projection based on Intel's 48 core datacenter chip (27 Million transistors per core) and lithographic improvements

A new programming language to drive programmer productivity and scaling in the Multicore era

- Introduce X10, a parallel programming language that has been funded by DARPA to achieve high productivity and high performance for the science/engineering community
 - IBM chose a broader programming model for productivity to enable use by middleware and commercial HPC programmers
 - 6x productivity improvement using X10 and its development environment over C/MPI (2009 productivity study at Rice University)
- X10 provides
 - Java-like language
 - Ability to specify fine-grained concurrency
 - Ability to represent heterogeneity at language level
 - Single programming model for computation offload
 - Migration path
 - X10 concurrency idioms can be realized in other languages, Java, C, Fortran, via library annotations that communicate with the APGAS runtime
- Leverages 5+ years of research and development via PERCS/HPCS
- Community building activities already underway (Columbia, CMU, Rice, etc.)
 - Tutorials and graduate classes using X10 in Fall'09
 - Open Collaborative Research and grants

IBM GPFS™ Parallel File System in Large Scale Infrastructure

© 2010 IBM Corporation

IBM General Parallel File System (GPFS[™])

GPFS is a scalable, highperformance file management infrastructure for IBM AIX®, Linux® and Windows™ systems.

A highly available cluster architecture

Concurrent shared disk access to a single global namespace

Capabilities for high-performance parallel workloads

IBM General Parallel File System (GPFS[™]) – History and evolution

GPFS 3.4 introduces improvements in performance, scalability, migration and diagnostics and enhanced Windows[™] high performance computing (HPC) server support, including support for homogenous Windows clusters.

Enhance organizationwide collaboration through multiclustering

Why?

- Tie together multiple sets of data into a single namespace
- Allow multiple application groups to share portions or all data
- Help enable security-rich, highly available data sharing that's also high performance

File system configuration and performance data

Extreme capacity and scale

General Parallel File System (GPFS[™]) already is running at data sizes most companies will start supporting five years from now.

File system

- 2⁶³ files per file system
- 256 file systems
- Maximum file system size: 2⁹⁹ bytes
- Maximum file size equals file system size
- Production 3 PB file system

Disk input and output:

- IBM AIX® 134 GB/sec
- Linux® 66 GB/sec

Number of nodes:

• 1 to 8192

Supported storage hardware

In addition to IBM Storage, IBM General Parallel File System (GPFS[™]) supports storage hardware from these vendors:

- EMC
- Hitachi
- Hewlett Packard
- DDN

GPFS supports many storage systems, and the IBM support team can help customers using storage hardware solutions not on this list of tested devices.

DEISA Partners and Associate Partners

Business need:

As a research infrastructure comprised of leading nation super computers in Europe, high bandwidth network connectivity is required to guarantee the high performance of the distributed services, and to avoid performance bottlenecks.

Solution:

A global shared file system based on IBM multicluster General Parallel File System (GPFS[™]) and a dedicated network provided by GEANT2

Next Era of Innovation – Hybrid Computing and Cloud

Next Era of Innovation – Hybrid Computing The Next Bold Step in Innovation & Integration

Symmetric Multiprocessing Era

Hybrid Computing Era

IBM

Example architectures of system level accelerators

Software Technology Trends

Emerging solution: Client Controlled Cloud – separation of control components

Existing Applications & Data

- Component on the premises of the enterprise
- On premises control of sharing and composition of services and sharing of information

Control components

- Clients declare policies for sharing data and services
- Selection and secure composition of cloud services from a variety of providers
- Client specify how and when to get more laaS or PaaS resources

C3 ensures secure composition of services, thus reducing data security and privacy issues

